Основные технические данные двигателя. Отключения подачи пускового топлива

Маслосистема двигателя включает в себя верхний масляный агрегат, нижний масляный агрегат, магистральные трубопроводы, воздушно-масляный радиатор, масляный бак и расширительный бачек.

Маслосистема обеспечивает постоянную подачу масла к подшипникам и к трущимся поверхностям деталей при работе двигателя для уменьшения трения и для отвода тепла. Для смазки применяется синтетическое масло Б-ЗВ, которое обладает хорошими смазывающими свойствами, высокой термохимической стабильностью, позволяющей работать при температурах масла выше 200° С, и обеспечивает запуск двигателя без подогрева масла при температуре окружающей среды до - 40° С.

Рис. 2. Схема масляной системы двигателя: 1 -- масляный бак; 2 -- масляный насос нагнетающий; 3 -- масляный фильтр; 4 и 11--запорные клапаны; 5 -- редукционный клапан; 6 -- манометр; 7 -- радиатор; 8, 9, 10, 13, 14 и 15 -- масляные насосы откачивающие; 12 -- термометр; 16 -- центробежный суфлер; 17 -- расширительный бачок

При работе двигателя масло из масляного бака 1 (рис. 2) вертолета по внешнему трубопроводу подводится к штуцеру в передней части корпуса коробки приводов. От штуцера по сверлению внутри корпуса коробки приводов масло подводится в заднюю часть коробки к фланцу крепления верхнего масляного агрегата и поступает на вход в нагнетающий масляный насос 2.

Нагнетаемое масляным насосом 2 масло проходит масляный фильтр 3, запорный клапан 4 по наружным трубопроводам, каналам в корпусах опор роторов двигателя и форсункам поступает к точкам смазки.

В нагнетающей магистрали системы смазки требуемое давление масла поддерживается редукционным клапаном 5. Давление измеряется манометром 6 в трубопроводе подачи масла к корпусам опор роторов двигателя.

Масло от точек смазки откачивается нижним масляным агрегатом, который включает в себя пять откачивающих насосов 8, 9, 10, 13 и 14. Из полости коробки приводов масло откачивается шестым откачивающим насосом 15, расположенным в верхнем масляном агрегате.

*Воздушно-масляный радиатор, масляный бак и расширительный бачек входят в состав внешней маслосистемы.

Из откачивающих насосов масло через запорный клапан 11 направляется в радиатор 7 и из него возвращается в масляный бак 1. Для предотвращения перетекания масла из бака в двигатель на стоянке в схеме предусмотрены два запорных клапана 4 и 11 в нагнетающей и откачивающей магистралях.

Температура выходящего из двигателя масла измеряется термометром 12 в магистрали отвода масла из нижнего масляного агрегата в радиатор.

В систему суфлирования двигателя входят центробежный суфлер 16, расположенный в коробке приводов, и расширительный бачок 17, установленный на вертолете.

Верхний масляный агрегат (рис. 3) расположен задней стенке корпуса коробки приводов с правой стороны и включает в себя блок масляных насосов 8, сетчатый фильтр 7, запорный клапан 6, редукционный клапан 19 и узел крышки фильтра. Все эти элементы заключены в общий магниевый корпус 4, имеющий два наружных штуцера: штуцер 1 для выхода масла, откачиваемого из коробки приводов, и штуцер 2 для отвода масла, нагнетаемого к точкам смазки двигателя.


Рис. 3. Верхний масляный агрегат: 1 -- штуцер отвода масла, откачиваемого из коробки приводов; 2 -- штуцер подачи масла к масляным полостям двигателя; 3 -- траверса; 4 -- корпус фильтра; 5 -- диск разделительный; 6 и 24 -- клапаны; 7 -- фильтр; 8 -- блок масляных насосов; 9, 14, 15 и 17 -- кольца уплотнительные; 10 -- насос откачивающий; 11-- насос нагнетающий; 12 -- фильтроэлементы; 13 -- каркас; 16 и 23 -- пружины; 18 и 26 -- крышки; 19 -- клапан редукционный; 20 -- кольцо стопорное; 21 -- трубки переходные; 22 -- кольцо регулировочное; 25 -- корпус клапана; 27 -- фильтр; 28-- пружина

Канал А для подачи масла в нагнетающий насос и канал Б для подачи масла в откачивающий насос соединены через переходные трубки 21 с соответствующими каналами в корпусе коробки приводов.

Блок 8 масляных насосов состоит из двух насосов -- нагнетающего 11 и откачивающего 10; оба насоса заключены в корпусы из магниевого сплава. Подшипниками ведущего валика насосов служат бронзовые втулки, запрессованные в корпус.

Масляный фильтр 7 состоит из 15 сетчатых дисковых фильтроэлементов 12, собранных на стальном каркасе 13, разделительного диска 5, запорного клапана 6 с пружиной 16, установленных в верхней части каркаса в зоне фильтрованного масла, и крышки 18 с траверсой 3. Крышка фильтра, разделительный диск и посадочный поясок корпуса фильтра снабжены уплотнительными резиновыми кольцами 17, 15, 14 и 9.

Нагнетаемое насосом масло подводится в полость Д корпуса агрегата, проходит внутрь фильтроэлементов и каркаса, отжимает запорный клапан и поступает в полость Г, откуда направляется к масляным полостям двигателя.

По каналу В масло направляется в коробку приводов и к первой опоре роторов двигателя, затем через штуцер 2 по наружной трубке -- к остальным опорам роторов двигателя.

Редукционный клапан 19 нагнетающего насоса состоит из стального корпуса 25 с цементированным седлом, тарельчатого клапана 24, имеющего четыре направляющих пера, пружины 23, регулировочных колец 22, стопорного кольца 20, сетчатого фильтра 27 и пружины 28. Редукционный клапан регулируют изменением поджатая пружины при помощи регулировочных колец 22. Редукционный клапан установлен в корпусе масляного агрегата и закрыт крышкой 26, которую пломбируют после регулировки клапана.

Внешний вид верхнего маслоагрегата и компоновка его основных узлов показаны на рисунке 4.

Схема работы верхнего маслоагрегата показана на рисунке 4.


Рис. 4. Верхний масляный агрегат: 1-- штуцер отвода масла, откачиваемого из коробки приводов; 2-- корпус; 3-- крышка фильтра; 4-- траверса; 5--вороток; 6-- крышка редукционного клапана; 7-- штуцер подачи масла к масляным полостям двигателя

Рис. 5. Схема работы верхнего масляного агрегата: 1-- канал подвода масла в откачивающий насос;2-- канал подвода масла в нагнетающий насос; 3-- откачивающий насос; 4-- нагнетающий насос; 5 -- сетчатый фильтр; 6-- редукционный клапан; 7-- штуцер подачи масла в нагнетающую магистраль; 8-- запорный клапан; 9-- канал откачивающей магистрали; А -- полость всасывания; Б -- полость нагнетания

Нижний масляный агрегат (рис. 6) расположен в нижней части двигателя и закреплен на шпильках к корпусу первой опоры ротора двигателя. Назначение агрегата -- откачивать отработанное (нагретое) масло от пяти точек двигателя, от всех пяти опор роторов двигателя и возвращать его по масляной магистрали через воздушно-масляный радиатор в масляный бак вертолета. Нижний масляный агрегат включает в себя пять откачивающих насосов, расположенных в два ряда: три насоса в верхнем ряду и два насоса в нижнем. На схеме масляной системы (см. рис. 6) насосы для наглядности расположены раздельно и в один ряд.

Рис. 6


Рис. 7 Нижний масляный агрегат: а и б -- разрезы; в -- схема циркуляции масла; г -- вид сверху;1 и 4 -- зубчатые колеса I ступени редуктора; 2 и 5 -- зубчатые колеса II ступени редуктора; 3 -- редуктор; 6 -- корпус насоса верхний; 7 --клапан запорный; 8 -- корпус насоса нижний; 9 -- крышка; 10 -- ось зубчатых колес; 11 -- нижний ряд насосов; 12 --верхний ряд насосов; 13 -- кран сливной; 14, 15, 17, 18 и 19 -- штуцеры подвода масла в агрегат; 16 -- штуцер отвода масла из агрегата

Нижний масляный агрегат состоит из следующих узлов (рис. 7): двух магниевых корпусов -- верхнего 6 и нижнего 8, крышки 9, двух рядов шестеренчатых насосов -- верхнего 12 и нижнего 11, трех бронзовых осей 10, на которых вращаются зубчатые колеса насосов, двухступенчатого редуктора 3, понижающего число оборотов привода насосов, запорного клапана 7, сливного крана 13, пяти приемных штуцеров 14, 15, 17, 18, 19 и выходного штуцера 16,

Верхний корпус, нижний корпус и крышка соединены между собой шпильками.

В агрегате верхний ряд насосов состоит из четырех зубчатых колес (для трех насосов), а нижний ряд насосов -- из трех зубчатых колес (для двух насосов). Каждое зубчатое колесо, кроме двух крайних, является рабочим элементом одновременно для двух насосов. Зубчатые колеса насосов верхнего и нижнего рядов по конструкции одинаковы, но колеса насосов верхнего ряда имеют большую высоту.

Следовательно, насосы верхнего ряда имеют большую производительность, чем насосы нижнего ряда.

Принцип работы одного ряда насосов показан на схеме (см. рис. 7). Зубчатые колеса нижнего масляного агрегата приводятся во вращение от центрального привода двигателя через нижнюю вертикальную рессору и понижающий редуктор.

Редуктор агрегата -- двухступенчатый, I ступень редуктора составляют зубчатые колеса 1 и 4, II ступень -- зубчатые колеса 2 и 5. Запорный клапан 7 агрегата смонтирован в приливе верхнего корпуса под штуцером 16 отвода масла в радиатор.

В нижнем корпусе агрегата установлены два штуцера -- 15 и 18 для трубопроводов магистрали откачки масла. Через штуцер 15 откачивается масло от третьей, а через штуцер 18 -- от пятой опор роторов двигателя.

В верхнем корпусе агрегата установлены четыре штуцера, из которых три штуцера 14, 17 и 19 служат для трубопроводов магистрали откачки масла, а штуцер 16 -- для трубопровода отвода масла из агрегата в радиатор. Через штуцер 14 откачивается масло из коробки приводов, через штуцер 17 -- от второй, а через штуцер 19 -- от четвертой опор роторов двигателя. От первой опоры роторов двигателя масло сливается в полость корпусов нижнего масляного агрегата.

Выходной штуцер 16, установленный на верхнем корпусе, соединен с полостью Л, объединяющей выходные стороны обоих рядов насосов. В нижней части этой полости установлен сливной кран 13. Для обеспечения герметичности полостей агрегата в соединения корпусов и крышки, а также в соединения всех штуцеров с корпусами установлены уплотнительные резиновые кольца.

Система суфлирования двигателя

Система суфлирования двигателя предназначена для сообщения масляных полостей двигателя с атмосферой, обеспечения работы масляных уплотнений и воздушно-масляных лабиринтов и для устранения возможности перетекания масла через уплотнения в проточную часть двигателя при повышении давления в масляных полостях опор роторов двигателя. Система суфлирования (рис. 8) состоит из системы суфлирующих каналов, трубопроводов и центробежного суфлера.

Суфлирование полостей опор роторов двигателя осуществляется двумя способами: суфлированием предмасляных полостей непосредственно в атмосферу и суфлированием масляных полостей через центробежный суфлер коробки приводов.

Предмасляные полости задней опоры ротора компрессора (полость Б) и задней опоры ротора турбины компрессора (полость Г), в которые может прорываться воздух под повышенным давлением из проточной части двигателя, суфлируются непосредственно в атмосферу через каналы в корпусах и наружные трубки 6 и 5. Концы трубок выведены к срезу выхлопного сопла.


Рис. 8. Схема системы суфлирования полостей опор роторов двигателя: I -- V -- опоры двигателя; 1 -- центробежный суфлер; 2 -- трубка суфлирования масляной полости II опоры; 3 -- трубка суфлирования масляной полости III опоры; 4 -- трубка суфлирования полости V опоры; 5-- трубка суфлирования предмасляной полости III опоры; 6--трубка суфлирования предмасляной полости II опоры

Масляные полости задней опоры ротора компрессора (полость В), задней опоры ротора турбины компрессора (полость Д) и опоры ротора свободной турбины (полости Е и Ж) через каналы в корпусах и наружные трубки 2, 3 и 4 суфлируются через приводной центробежный суфлер 1, расположенный в коробке приводов.

Воздух, отделенный в суфлере от масла, выводится за борт вертолета. Суфлирование коробки приводов также осуществляется через центробежный суфлер. Полость передней опоры ротора компрессора (полость А) не суфлируется.

Суфлирование масляного бака осуществлено независимо от системы суфлирования двигателя.

Масляный бак суфлируется через расширительный бачок 17 (см. рис.2), в котором масло отделяется от воздуха, путем конденсации. Масляный конденсат собирается в нижней части расширительного бачка, сообщающегося с маслобаком.

Схема объединенных масляной и суфлирующей систем двигателя приведена на рис. 9.

Рис. 9. Объединенная схема масляной и суфлирующей систем двигателя


Введение

ОБЩИЕ СВЕДЕНИЯ О ДВИГАТЕЛЕ ТВ2-117А (АГ)

Отказ одного двигателя

1 Признаки отказа одного двигателя

2 Внезапный отказ одного двигателя

3 Действия экипажа при отказе одного двигателя

4 Полет с одним неработающим двигателем

5 Техника выполнения посадки с коротким пробегом с одним неработающим двигателем

6 Выключение одного двигателя в полете в учебных целях

7 Запуск двигателя в полете в учебных целях

8 Запуск двигателя прекратить

9 Аварийное выключение двигателя

Возможные неисправности двигателя ТВ2-117АГ

1 Возможные неисправности компрессора при эксплуатации и их предупреждение

2 Дефекты, нарушающие работу камеры сгорания

3 Неисправности турбин и их предупреждение

3.4 Условия работы и возможные неисправности выхлопного устройства

3.5 Возможные неисправности системы смазки при эксплуатации и их предупреждение

7 Возможные неисправности топливной системы

8 Возможные неисправности системы регулирования и управления и их предупреждение

3.9 Неисправности гидравлической системы

3.10Техническое обслуживание гидросистемы двигателя ТВ2-117АГ

11 Возможные неисправности системы запуска

4. Технология работы членов экипажа при отказах силовой установки вертолета МИ -8т

1 Отказ одного двигателя на скорости с запасом высоты

2 Отказ одного двигателя на малой высоте

3 Отказ двух двигателей в полете

4 Появление в полете постороннего шума хлопков рывков тряски вертолета

5 Загорание светосигнального табло «стружка в левом двигателе» стружка в «правом двигателе»

ЗАКЛЮЧЕНИЕ

1 Анализ авиационных происшествий за 7 лет в период с 2000 по 2007 год

2 Краткое содержание фактов АП

Список используемой литературы

Введение

ЦЕЛЬ ДИПЛОМНОЙ РАБОТЫ:

В данной дипломной работе мне предстоит разобрать силовую установку, ознакомиться с ее особенностями. Описать отказ (выключение) одного двигателя в полете, особенности летной и технической эксплуатации, технологию работы членов экипажа в особых случаях полета.

НАЗНАЧЕНИЕ, КРАТКАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА МИ-8Т

Вертолет Ми-8 предназначен для перевозки пассажиров, багажа, грузов и почты в труднодоступной местности, а также для проведения специальных авиационных работ в различных отраслях народного хозяйства. По весовой категории вертолет Ми-8 относится к вертолетам 1 класса. Вертолет спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установлены два турбовинтовых двигателя ТВ2-117АГ с взлетной мощностью 1100 кВт (1500 л.с.) каждый, что обеспечивает возможность посадки вертолета при отказе одного из двигателей.

Вертолет эксплуатируется в двух основных вариантах: пассажирском Ми-8П и транспортном Ми-8Т

Силовая установка является источником энергии для привода несущего и рулевого винтов, а также агрегатов систем вертолета и двигателей. Она состоит из двух газотурбинных двигателей ТВ2-117АГ, систем и устройств, обеспечивающих их работу.

Двигатели установлены на потолочной панели центральной части фюзеляжа впереди главного редуктора симметрично относительно продольной оси вертолета. Каждый из двигателей имеет мощность 1100 кВт и работает независимо один от другого.

Для обеспечения высокой надежности работы и противопожарной безопасности, поддержания оптимального температурного режима двигателей и защиты их от влияния атмосферных явлений на вертолете установлены следующие системы и устройства: топливная и масляная системы, система воздушного охлаждения, пылезащитное устройство, система пожаротушения, капоты двигателей и главного редуктора. Пассажирский вариант вертолета предназначен для межобластных и местных перевозок пассажиров, багажа, почты и малогабаритных грузов. Он рассчитан на перевозку 28 пассажиров. Транспортный вариант предусматривает перевозку грузов массой до 4000 кг или 24 служебных пассажиров. По желанию заказчика пассажирский салон вертолета может быть оборудован в салон с повышенным комфортом на 11 или 7 пассажиров.

Вертолет Ми-8П может быть переоборудован в транспортный, санитарный варианты, а также варианты с увеличенной дальностью (перегоночный) и с внешней подвеской грузов.

Транспортный вариант так же, как и пассажирский, при необходимости переоборудуется в санитарный, перегоночный варианты и вариант с внешней подвеской грузов. Вертолет в санитарном варианте может перевозить 12 лежачих больных и сопровождающего медработника. Вертолет с внешней подвеской грузов перевозит крупногабаритные грузы массой до 3000 кг вне фюзеляжа.

Перегоночный вариант вертолета необходим для выполнения полетов с увеличенной дальностью (от 620 до 1035 км). В этом случае в грузовую кабину вертолета за счет коммерческой нагрузки устанавливают один или два дополнительных топливных бака. Существующие варианты вертолета снабжены электролебедкой, позволяющей с помощью бортовой стрелы поднимать (опускать) на борт вертолета грузы массой до 150 кг, а также при наличии полиспаста затягивать в грузовую кабину грузы массой до 2600 кг.

Экипаж вертолета состоит из двух пилотов и бортмеханика.

1. ОБЩИЕ СВЕДЕНИЯ О ДВИГАТЕЛЕ ТВ2-117А (АГ)

Турбовальный двигатель ТВ2-117АГ устанавливается на вертолете Ми-8.Силовая установка вертолета состоит из двух двигателей ТВ2-117АГ и главного редуктора ВР-8А.

Правый и левый двигатели взаимозаменяемы при условии разворота выхлопного патрубка На вертолете двигатели подсоединены к одному главному редуктору, который передает суммарную мощность двигателей несущему и хвостовому винтам.

Особенностью конструкции ТВ2-117АГ является наличие в нем свободной турбины (турбины винта), мощность которой, передаваемая редуктору, составляет эффективную мощность двигателя. Свободная турбина кинематически не связана с турбокомпрессорной частью двигателя. Эта особенность обеспечивает ряд конструктивных и эксплуатационных преимуществ двигателя: позволяет получать требуемую частоту вращения вала несущего винта вертолета независимо от частоты вращения ротора турбокомпрессора двигателя; облегчает раскрутку турбокомпрессора при запуске двигателя, позволяет получать оптимальный расход топлива при различных условиях эксплуатации двигателя; исключает необходимость использования фрикционной муфты (муфты включения) в силовой установке вертолета. Силовая установка вертолета имеет систему автоматического поддержания частоты вращения несущего винта с синхронизацией мощности обоих двигателей, двигатели ТВ2-117А с 1984 г. выпускаются с графитовым уплотнением узла II опоры ротора турбокомпрессора вместо контактно-кольцевого. Двигатели с указанным изменением имеют условное обозначение ТВ2-11АГ и по своим техническим параметрам и эксплуатации не отличаются от двигателей ТВ2-117А.

Основные характеристики двигателя ТВ2-117А (АГ):

·Тип двигателя... турбовинтовой, со свободной турбиной

·Направление вращения............................................... левое

·Частота вращения свободной турбин. 12000 об/мин (100 %)

·Мощность на выходном валу (взлетный режим).... 1500 л.с.

·Сухая масса......... не более 334 кг + 2%

·Длина с агрегатами и выхлопным патрубком... не более 2843 мм

·Ширина........... не более 550 мм

·Высота............... не более 748 мм

2. ОТКАЗ ОДНОГО ДВИГАТЕЛЯ

2.1 ПРИЗНАКИ ОТКАЗА ДВИГАТЕЛЯ

Под отказом двигателя понимаются случаи самопроизвольной полной или частичной потери мощности, а также случаи нарушения работоспособности силовой установки, требующие либо аварийного, либо нормального (с режима малый газ) выключения двигателя, либо уменьшения режима работы двигателя.

Полная потеря мощности одного двигателя в полете сопровождается:

§резким изменением характера шума от работы двигателей;

§изменением углового положения вертолета (пикированием, а также разворотом и кренением вправо) с уменьшением высоты полета, вызванным уменьшением частоты вращения несущего винта;

§уменьшением частоты вращения турбокомпрессора, температуры газа, давления топлива и масла на входе в двигатель.

При отказе (выключении) одного двигателя автоматика выводит работающий двигатель на повышенный режим работы вплоть до взлетного в зависимости от величинны шага несущего винта, выдерживаемой пилотом, и соответствующей ей частоты вращения несущего винта. Автопилот в этом случае стабилизирует или демпфирует изменения углового положения вертолета. Такая работа автоматики значительно уменьшает вызванное отказом двигателя падение частоты вращения несущего винта и разбалансировку вертолета, облегчает пилотирование, однако не исключает принятия пилотом энергичных мер по установлению наивыгоднейших режимов полета вертолета с отказавшим двигателем.

Пилот о таком виде отказа может судить по отклонениям от нормы параметров работы одного из двигателей (уменьшение частоты вращения ротора турбокомпрессора или понижение температуры газа перед турбиной и др.).

2 ВНЕЗАПНЫЙ ОТКАЗ ОДНОГО ИЗ ДВИГАТЕЛЕЙ

В этом случае уменьшением общего шага на 1-3°С не допустить падения оборотов Nнв ниже 89% (допускается кратковременное падение Nнв до 80% в момент отказа). Далее:

§определить по показаниям приборов, какой из двигателей отказал. И выключить его. Закрыв соответствующий стоп-кран;

§перевести РРУ работающего двигателя в крайнее верхнее положение;

§закрыть пожарный кран остановленного двигателя;

§выключить его генератор;

§рычагом шаг-газ установить работающему двигателю взлетный режим (Nнв = 92 - 93%) или режим, обеспечивающий продолжение полета.

ПРИМЕЧАНИЕ. В СЛУЧАЕ НЕВОЗМОЖНОСТИ ВЫПОЛНЕНИЯ ПОСАДКИ ВЗЛЕТНЫЙ РЕЖИМ РАБОТЫ ДВИГАТЕЛЯ МОЖНО ИСПОЛЬЗОВАТЬ БЕЗ ОГРАНИЧЕНИЯ ПО ВРЕМЕНИ.

3 ДЕЙСТВИЯ ЭКИПАЖА ПРИ ОТКАЗЕ В ПОЛЕТЕ ОДНОГО ДВИГАТЕЛЯ

При внезапном отказе в полете одного из двигателей на скорости и с запасом высоты (с резервом времени до перехода на посадку) командиру вертолета необходимо:

§при \/пр. более 120 км/ч взятием ручки циклического шага на себя перейти на торможение вертолета с интенсивностью, обеспечивающей выход на полет Vпр=120-130 км/ч без потери высоты или с набором высоты;

§отклонением левой педали вперед парировать стремление вертолета к развороту вправо;

§при Vпр. менее 120 км/ч незначительным отклонением ручки "ШАГ-ГАЗ" вниз не допускать падение частоты вращения несущего винта менее 89%, а отклонением левой педали вперед и ручки управления на себя и влево парировать стремление вертолета к правому развороту и уменьшению угла тангажа;

§определить по показаниям приборов, какой из двигателей отказал, и выключить его, закрыв соответствующий кран останова;

§перевести рычаг раздельного управления работающего двигателя в крайнее верхнее положение;

§закрыть перекрывной кран топлива остановленного двигателя или
дать команду бортмеханику закрыть перекрывной кран топлива левого, (правого) двигателя;
§установить изменением величины общего шага несущего винта взлетный режим работающему двигателю при частоте вращения несущего винта 92-93 %;

§после стабилизации режима полета изменением общего шага установить режим, соответствующий Vпр.=120-130 км/ч, уменьшив по возможности режим работы двигателя;

§произвести вынужденную посадку на ближайшем аэродроме (вертодроме) или на площадке, подобранной с воздуха и пригодной для посадки с коротким пробегом.

ПРЕДУПРЕЖДЕНИЯ:

1.ЗАПУСК В ПОЛЕТЕ ОТКАЗАВШЕГО ДВИГАТЕЛЯ ЗАПРЕЩАЕТСЯ, КРОМЕ СЛУЧАЕВ САМОВЫКЛЮЧЕНИЯ ДВИГАТЕЛЯ (ДВИГАТЕЛЕЙ) ПРИ ПОЛЕТЕ ВЕРТОЛЕТА В УСЛОВИЯХ ОБЛЕДЕНЕНИЯ, СИЛЬНОГО СНЕГОПАДА И ДОЖДЯ, В ЭТИХ СЛУЧАЯХ (ЕСЛИ САМОВЫКЛЮЧЕНИЕ ДВИГАТЕЛЯ В ПОЛЕТЕ СОПРОВОЖДАЛОСЬ ЛЕГКИМ ХЛОПКОМ В РАЙОНЕ СИЛОВОЙ УСТАНОВКИ БЕЗ ПОВЫШЕНИЯ ТЕМПЕРАТУРЫ ГАЗА ПЕРЕД ТУРБИНОЙ"ВЫШЕ ДОПУСТИМОЙ И БЕЗ ПОСТОРОННЕГО МЕТАЛЛИЧЕСКОГО ЗВУКА) РАЗРЕШАЕТСЯ ПРОИЗВЕСТИ ЗАПУСК ДВИГАТЕЛЯ В ПОЛЕТЕ, ДЛЯ ЭТОГО НЕОБХОДИМО ОПРЕДЕЛИТЬ ПО ПОКАЗАНИЯМ ПРИБОРОВ, КАКОЙ ИЗ ДВИГАТЕЛЕЙ ВЫКЛЮЧИЛСЯ, ЗАКРЫТЬ СООТВЕТСТВУЮЩИЙ КРАН ОСТАНОВА, А РЫЧАГ РАЗДЕЛЬНОГО УПРАВЛЕНИЯ ВЫКЛЮЧЕННОГО ДВИГАТЕЛЯ ПЕРЕВЕСТИ НА НИЖНИЙ УПОР И ПРОИЗВЕСТИ ЗАПУСК ДВИГАТЕЛЯ.

2.ПРИ НЕВОЗМОЖНОСТИ БЕЗОПАСНОГО ПРОДОЛЖЕНИЯ ПОЛЕТА НА НОМИНАЛЬНОМ РЕЖИМЕ РАБОТЫ ОДНОГО ДВИГАТЕЛЯ РАЗРЕШАЕТСЯ ИСПОЛЬЗОВАТЬ ВЗЛЕТНЫЙ РЕЖИМ РАБОТЫ ДВИГАТЕЛЯ ДО ВЫПОЛНЕНИЯ ПОСАДКИ.

.ВРЕМЯ НЕПРЕРЫВНОЙ РАБОТЫ ДВИГАТЕЛЯ НА ВЗЛЕТНОМ РЕЖИМЕ НЕ БОЛЕЕ 6 МИН, ДОПУСКАЕТСЯ НАРАБОТКА ДО 60 МИН, ПОСЛЕ ЧЕГО ДВИГАТЕЛЬ И ГЛАВНЫЙ РЕДУКТОР ПОДЛЕЖАТ СНЯТИЮ.

.ПРИ НЕВОЗМОЖНОСТИ БЕЗОПАСНОГО ПРОДОЛЖЕНИЯ ПОЛЕТА С ОДНИМ РАБОТАЮЩИМ ДВИГАТЕЛЕМ ПРИ ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕГО ВОЗДУХА +5°С И ВЫШЕ РАЗРЕШАЕТСЯ ОТКЛЮЧИТЬ РЕГУЛЯТОР ТЕМПЕРАТУРЫ ГАЗОВ УРП-27 РАБОТАЮЩЕГО ДВИГАТЕЛЯ АЗСом ОГРАНИЧ. ТЕМПЕР. ДВИГАТ., РАСПОЛОЖЕННЫМ НА ЛЕВОЙ ПАНЕЛИ АЗС В КАБИНЕ ЭКИПАЖА. ДОПУСТИМОЕ ВРЕМЯ ОДНОРАЗОВОЙ НЕПРЕРЫВНОЙ РАБОТЫ ДВИГАТЕЛЯ ПРИ ОТКЛЮЧЕНИИ УРТ-27 - НЕ БОЛЕЕ 30 МИН. МАКСИМАЛЬНО ДОПУСТИМАЯ ТЕМПЕРАТУРА ГАЗОВ НЕ ДОЛЖНА ПРЕВЫШАТЬ 925°С.

При внезапном отказе одного двигателя в полете на малой высоте и невозможности выполнения полета без снижения (без резерва времени до перехода на посадку) командиру вертолета необходимо:

§незначительным отклонением ручки "ШАГ-ГАЗ" вниз не допускать падения частоты вращения несущего винта менее 89%. Отклонением левой педали и ручки циклического шага парировать, при необходимости, стремление вертолета к правому развороту и уменьшению угла тангажа;

§изменением общего шага и отклонением ручки управления и педалей установить наивыгоднейший режим полета, обеспечивающий достижение подобранной площадки для безопасной посадки с одним работающим двигателем.

ВНИМАНИЕ. ПРИ ОТКАЗЕ ДВИГАТЕЛЯ У ЗЕМЛИ НА МАЛОЙ ВЫСОТЕ И МАЛОЙ СКОРОСТИ ПРОИСХОДИТ ЗНАЧИТЕЛЬНОЕ УВЕЛИЧЕНИЕ ВЕРТИКАЛЬНОЙ СКОРОСТИ, ДЛЯ ПАРИРОВАНИЯ КОТОРОЙ ПИЛОТ МОЖЕТ ПРЕЖДЕВРЕМЕННО УВЕЛИЧИТЬ. ШАГ ДО НЕДОПУСТИМОЙ ВЕЛИЧИНЫ, ПОЭТОМУ НЕОБХОДИМО УЧИТЫВАТЬ, ЧТО ТЕМП УВЕЛИЧЕНИЯ ШАГА И ЕГО МАКСИМАЛЬНАЯВЕЛИЧИНА ЗАВИСЯТ ОТ ВЫСОТЫ ПОЛЕТА И СКОРОСТИ ПРИБЛИЖЕНИЯ К ЗЕМЛЕ.

4 ПОЛЕТ С ОДНИМ НЕРАБОТАЮЩИМ ДВИГАТЕЛЕМ

Полеты с одним неработающим двигателем выполняются в диапазоне скоростей, разрешенном для горизонтального полета, набора высоты и моторного снижения согласно РЛЭ п. 2.5.3.

Зависимость полетной массы вертолета, с которой возможен горизонтальный полет без снижения при отказе (выключении) одного из двигателей и работе второго на взлетном режиме от температуры окружающего воздуха и барометрической высоты полета при наивыгоднейшей скорости полета 120 км/ч приведена в РЛЭ, рис. 6.6.1.

ПРИМЕЧАНИЯ:

§При наличии у вертолета дефицита тяги, определенного согласно п. 3.1.3.7 и записанного в бортжурнале, необходимо массу, определенную по графику РЛЭ, рис. 6.6.1 уменьшить на величину дефицита.

§При температуре воздуха равной и выше стандартной, массу, определенную по графику РЛЭ, рис. 6.6.1 необходимо уменьшить на 350 кг.

§При включении пос двигателя и воздухозаборника полетную массу следует уменьшить на 700 кг..

§При установленном (выключенном) ПЗУ двигателя полетную массу следует уменьшить на 300 кг.

§Полет с одним работающим двигателем разрешается производить без последующих дополнительных ограничений по эксплуатации при режиме работы двигателя выше номинального в течение не более б мин.

При невозможности выполнения горизонтального полета на наивыгоднейшей скорости 120 км/ч следует производить прямолинейный полет со снижением или полет с разворотом и со снижением на скорости, обеспечивающей достижение площадки, подобранной для посадки. Особое внимание при разворотах необходимо обращать на координированность действий (выдерживание положения шарика по авиагоризонту в центре) поскольку полет со скольжением приводит к значительному увеличена вертикальной скорости снижения.

2.5 ТЕХНИКА ВЫПОЛНЕНИЯ ПОСАДКИ С КОРОТКИМ ПРОБЕГОМ С ОДНИМ НЕРАБОТАЮЩИМ ДВИГАТЕЛЕМ

Посадку с одним неработающим двигателем, отказавшим при за пасе высоты и скорости полета над препятствиями, необходимо производить, по возможности, против ветра в следующем порядке:

§снижение на выбранную площадку следует производить на скорости 100-120 км/ч, развороты выполнять с углом крена не более 15° .

§снижение, начиная с высоты.100 М, выполнять на УПр=80 км/
при ветре у земли не более 5 м/с и на Упр=80-120 км/ч при
ветре более 5 м/с с вертикальной скоростью снижения 2-4 м/с;
§на предпосадочной прямой на высоте 50 м выключить ПОС работающего двигателя;
§уменьшение поступательной и вертикальной скоростей начинать с высоты 40. . .50 м с таким расчетом, чтобы на высоте 10. . .15 м мощность двигателя была взлетной, а поступательная скорость относительно земли 15-20 км/ч. Увеличение общего шага производить плавно, не допуская падения частоты вращения НВ ниже 92 %.По мере приближения к земле увеличивать шаг более энергично с таким расчетом, чтобы на высоте 0,5-1м он был близок к максимальному. Вертолет при этом приземляется с небольшими вертикальной и поступательной скоростями;

§на высоте 5-10 м от земли до колес шасси ручку циклического шага отдать от себя, с тем, чтобы придать вертолету необходимый посадочный угол и избежать касания земли хвостовой опорой;

§после приземления вертолета, при поднятой вверх ручке общего шага, для торможения вертолета на пробеге необходимо слегка взять на себя от нейтрального положения ручку циклического шага, использовать тормоза колес. Длина послепосадочного пробега вертолета составляет 0-30 м в штиль с посадочной массой около 12 000 кг. Посадочная дистанция с высоты 15 м составляет при этом 115-85 м.

§после остановки вертолета установить ручку циклического шага в нейтральное положение, вывести коррекцию влево с одновременным плавным сбросом общего шага.

ПРЕДУПРЕЖДЕНИЕ. В АВАРИЙНОЙ СИТУАЦИИ В СЛУЧАЕ ОТКАЗА ОДНОГО ИЗ ДВИГАТЕЛЕЙ ПРИ РАБОТЕ ДРУГОГО НА РЕЖИМЕ ВЫШЕ НОМИНАЛЬНОГО ДОПУСКАЕТСЯ КАК ИСКЛЮЧЕНИЕ ПРИ ПРИЗЕМЛЕНИИ ПРОВАЛ ОБОРОТОВ НЕСУЩЕГО ВИНТА ДО 70% В ТЕЧЕНИЕ 15 С. ВОПРОС О ДАЛЬНЕЙШЕЙ ЭКСПЛУАТАЦИИ ТАКОГО ДВИГАТЕЛЯ И ГЛАВНОГО РЕДУКТОРА МОЖЕТ БЫТЬ РЕШЕН ТОЛЬКО ПОСЛЕ ОСМОТРА И ПОЛУЧЕНИЯ ЗАКЛЮЧЕНИЯ ПРЕДСТАВИТЕЛЕЙ ЗАВОДА ИЗГОТОВИТЕЛЯ.

Посадку при одном неработающем двигателе, отказавшем на малой высоте полета над препятствиями, следует выполнять по возможности в соответствии с рекомендациями, изложенными в РЛЭ 6.6.4.1. При этом необходимо учитывать следующее. Отказ двигателя в режиме снижения при наклоне траектории около 10° (Vпр.=60-80 км/ч и Vу = 2-4 м/с, в штиль) при заходе на посадку по-вертолетному с использованием влияния "воздушной подушки" или с пробегом - практически не приводит к уходу вертолета с посадочной траектории. В этом случае обеспечивается возможность посадки вертолета против ветра в намеченную точку ограничений по размерам площадки практически без пробега.

При отказе одного двигателя в горизонтальном полете и при взлете на высотах менее 20-30 м в случае невозможности продолжения полета без снижения посадка выполняется прямо перед собой или с отворотом в сторону с гашением поступательной и вертикальной скоростей соразмерно со скоростью приближения к земле. При этом, в случае отказа двигателя на скоростях менее 60 км/ч на высотах более 15-20 мцелесообразнее сразу же после парирования разбалансировочных моментов и незначительного сбора шага отдачей ручки от себя увеличить скорость до 60-80 км/ч, т.е. перейти на более выгодную скорость, обеспечивающую лучшие аэродинамические условия посадки с "подрывом"

При отказе одного двигателя на взлете на высотах более 30-50 м в условиях, обеспечивающих однодвигательный полет вертолета с положительной скороподъемностью или незначительной скоростью снижения, возможен полет по кругу с посадкой на площадку взлета. Пилотирование вертолета при этом необходимо производить в соответствии с рекомендациями РЛЭ п. 6.6.2.

При отказе двигателя на взлете в условиях фактической видимости ниже минимума для посадки (взлетная масса вертолета менее определенной из номограммы РЛЭ, рис. 6.6.1, на 1,3 т):

§на высоте менее 20 м взлет прекратить и произвести посадку на летную полосу с гашением поступательной и вертикальной скоростей соразмерно со скоростью приближения к земле;

§на высоте 20 м и более выполнить продолженный взлет. Для выполнения продолженного взлета после отказа двигателя и устранения разбалансировки вертолет перевести в разгон скорости до 120 км/ч при взлетном режиме работы двигателя. Набрать безопасную высоту и выполнить полет на запасной аэродром (вертодром), минимум которого не хуже минимума КВС для посадки на нем.

При отказе одного двигателя на висении происходит резкое снижение вертолета с разворотом вправо, причем пилот первоначально замечает снижение. Если отказ двигателя происходит на высотах менее 5 м, то действия пилота сводятся к парированию разбалансировочных моментов педалями и ручкой циклического шага и к увеличению общего шага. Увеличение общего шага необходимо производить с исходного практически сразу и соразмерно скорости приближения к земле.

Если отказ двигателя происходит на высотах более 5 м, то после парирования разбалансировочных моментов необходимо незначительно уменьшить общий шаг для замедления темпа падения частоты вращения несущего винта и отклонением ручки циклического шага придать вертолету незначительное поступательное движение вперед для создания более выгодных аэродинамических условий посадки с "подрывом". Приземлять вертолет на основные колеса шасси необходимо строго вертикально, удерживая его от боковых перемещений ручкой циклического шага.

При выполнении вынужденной посадки на лес необходимо, по возможности, выбрать для посадки наиболее ровный участок леса с расстоянием между стволами деревьев не более 10-15 м, избегая отдельно стоящих больших деревьев. Снижение выполняется в соответствии с рекомендациями РЛЭ. Уменьшение поступательной и вертикальной скоростей необходимо начинать с высоты 40-50 м от уровня верхушек деревьев отклонением ручки управления на себя и плавным увеличением общего шага с таким расчетом, чтобы к моменту касания колесами шасси верхушек деревьев мощность двигателя была взлетной, а поступательна, скорость не более 10-15 км/ч.

При этом перед касанием деревьев, для избежания лобового удара, следует придать вертолету положение на кабрирование и выключить работающий двигатель краном останова.

Произвести более энергичное увеличение общего шага в момент касания фюзеляжем верхушек деревьев, что даст возможность не допустить значительных вертикальных скоростей снижения к моменту начала касания деревьев несущим винтом.

При посадке на лес высотой менее 4-5 м за поверхность приземлен принимать землю.

6 ВЫКЛЮЧЕНИЕ ДВИГАТЕЛЯ В ПОЛЕТЕ В УЧЕБНЫХ ЦЕЛЯХ

При выключении двигателя в полете в учебных целях необходимо рычаг раздельного управления выключаемого двигателя перевести вниз до упора (двигатель на режиме малого газа должен проработать не менее 1 мин); ручку управления остановом двигателя перевести в положение "ЗАКРЫТО"; выключатель ПОЖАРН. КРАН установить в положение "ВЫКЛ." При выполнении полета следить за параметрами работающего двигателя, которые должны соответствовать рекомендациям РЛЭ 7.5.

7 ЗАПУСК ДВИГАТЕЛЯ В ПОЛЕТЕ В УЧЕБНЫХ ЦЕЛЯХ

Запуск двигателя в полете производить аналогично автономному запуску на земле.

ВНИМАНИЕ. 1. ЗАПУСК ДВИГАТЕЛЯ ПРОИЗВОДИТЬ НА ЧАСТОТЕ ВРАЩЕНИЯ АВТОРОТАЦИИ ТУРБОКОМПРЕССОРА НЕ БОЛЕЕ 20%.

НАДЕЖНОСТЬ ЗАПУСКА ОБЕСПЕЧИВАЕТСЯ ДО ВЫСОТЫ 3000 М.

8 ЗАПУСК ДВИГАТЕЛЯ ПРЕКРАТИТЬ

§температура газа на частоте вращения турбокомпрессора ниже 40% повышается более 500°С, а на частоте вращения свыше 40% - более 600°С;

§произошло зависание оборотов двигателя в течение 3 с. в процессе выхода на режим малого газа;

§нет воспламенения топлива;

§появилась течь топлива, масла или появились другие признаки ненормальной работы двигателей, редуктора или агрегатов;

§отсутствует увеличение давления масла по манометру;

§напряжение борт сети устойчиво падает ниже 16 В;

§загорелось или мигает светосигнальное табло СТРУЖКА ЛЕВ. ДВИГ., СТРУЖКА ПРАВ. ДВИГ.

Для прекращения запуска ручку управления остановом двигателя перевести в положение <ЗАКРЫТО>. Кнопкой прекращения запуска пользоваться в случаях, когда необходимо ускорить отработку цикла автоматики запуска, например при зависании оборотов турбокомпрессора без увеличения температуры газа, при неподжиге топлива, замеченной неисправности стартер генератора. Кнопкой пользоваться после открытия стоп-крана.

ПРЕДУПРЕЖДЕНИЯ: 1. ПОВТОРНЫЕ ЗАПУСКИ РАЗРЕШАЕТСЯ ПРОИЗВОДИТЬ ПОСЛЕ ВЫЯВЛЕНИЯ И УСТРАНЕНИЯ ПРИЧИН НЕНОРМАЛЬНОГО ЗАПУСКА. 2. ПОСЛЕ НЕУДАВШЕГОСЯ ЗАПУСКА НЕОБХОДИМО ПЕРЕД СЛЕДУЮЩИМ ЗАПУСКОМ ПОИЗВЕСТИ ХОЛОДНУЮ ПРОКРУТКУ.

2.9 АВАРИЙНОЕ ВЫКЛЮЧЕНИЕ ДВИГАТЕЛЯ

Аварийное выключение двигателя производить в следующих случаях:

§при уменьшении давления масла в двигателе до значений менее 3 кгс/см² до 2 кгс/см² и одновременном увеличении температуры масла от установившегося значения на 10 - 20 °С;

§при уменьшении давления масла ниже 2 кгс/см² или повышении температуры масла в двигателе выше 125 °С;

§при повышении температуры газа перед турбиной компрессора выше нормы;

§при резком падении частоты вращения турбокомпрессора;

§при сильном выбивании пламени из выхлопного патрубка;

§при опасной в пожарном отношении течи топлива или масла;

§при возникновении пожара в отсеке двигателя.

На земле, кроме указанных выше случаев, аварийное выключение двигателя производится при резком падении давления масла в главном редукторе ниже 2 кгс/см². двигатель может быть выключен стоп-краном с любого режима без перевода его на малый газ и охлаждения.

ВНИМАНИЕ. ПРИ ОТКАЗЕ В РАБОТЕ СТОП-КРАНА ВЫКЛЮЧИТЬ ДВИГАТЕЛЬ, ЗАКРЫВ ПЕРЕКРЫВНОЙ (ПОЖАРНЫЙ) КРАН ТОПЛИВА ВЕРТОЛЕТА.

3. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ДВИГАТЕЛЯ ТВ2-117АГ

3.1 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОМПРЕССОРА ПРИ ЭКСПЛУАТАЦИИ И ИХ ПРЕДУПРЕЖДЕНИЕ

Компрессор двигателя ТВ2- 117 АГ

В процессе эксплуатации двигателей отмечаются следующие характерные неисправности узлов и деталей компрессора.

1. Разрушение лопаток ротора, что происходит по следующим основным причинам.

Попадание посторонних предметов в двигатель при техническом обслуживании или при стоянке вертолета. Наибольшую опасность представляет попадание в компрессор металлических предметов. Поэтому после окончания какого-либо вида технического обслуживания, а также при наличии вероятности попадания посторонних предметов перед запуском необходимо тщательно осмотреть входную часть двигателя и специальной рукояткой вручную прокрутить турбокомпрессор. Попадание в двигатель легких посторонних предметов на взлете ив полете (например, небольшой птицы) менее опасно, так как в этих случаях вероятность разрушения рабочих лопаток несколько ниже.

Примерзание лопаток ротора к корпусу при стоянке, вертолета в условиях пониженных температур окружающего воздуха. Вследствие малой величины монтажных зазоров между торцами рабочих лопаток и корпусом попадание в эти зазоры даже небольшого количества влаги может приводить к примерзанию рабочих лопаток. Влага при стоянке вертолета попадает в проточную часть двигателя при неплотно закрытой заглушке воздухозаборника, возможна конденсация влаги при охлаждении двигателя после его выключения. Запуск или даже холодная прокрутка (стартером) двигателя с примерзшими лопатками ротора приводит к их поломке или опасной деформации.

Ротор компрессора ТВ2- 117АГ

Для предупреждения поломки лопаток в этих условиях следует перед запуском двигателя (или перед холодной прокруткой) провернуть ротор турбокомпрессора вручную. При обнаружении примерзания лопаток (ротор не проворачивается) необходимо продуть проточную часть двигателя теплым воздухом от аэродромного подогревателя.

Неэффективность (отказ или неправильное пользование) системы обогрева входной части компрессора. Обледенение деталей входной части компрессора и двигателя обычно сопровождается скалыванием с них кусочков льда и попаданием их на лопатки компрессора. Вследствие большей частоты вращения рабочих лопаток первой ступени компрессора попадание на них даже небольших частичек льда создает забоины на лопатках и может вызвать в последующем их разрушение. Неэффективность системы обогрева наблюдается обычно при работе двигателя в условиях обледенения на низких режимах из-за недостаточной температуры воздуха, отбираемого для обогрева.

Особенно значительное уменьшение температуры воздуха на входе в противообледенительную систему возможно при планировании вертолета. Поэтому при планировании с работающими двигателями в условиях возможного обледенения нельзя допускать снижение птк меньше 85%. Соответственно для предупреждения разрушения лопаток компрессора частицами льда необходимо в условиях обледенения избегать пониженных режимов работы двигателя и при ручном управлении системой обогрева включать ее заблаговременно, до наступления обледенения.

Помпаж компрессора, в процессе которого возникает повышенная вибрация лопаток и всей конструкции компрессора; лопатки испытывают переменные нагрузки и при наличии забоин, рисок, царапин могут разрушаться. Конструктивные и профилактические меры борьбы с помпажом изложены выше.

Превышение допустимого времени беспрерывной работы двигателя на форсированных режимах или работа на режиме выше допустимого для данных полетных условий. В этих случаях после уменьшения частоты вращения турбокомпрессора появляется остаточная деформация рабочих лопаток. При неоднократной нагрузке, близкой к разрушающей, в особенности при наличии повреждений и износе лопаток может происходить их разрушение(или обрыв). Поэтому двигателю ТВ2-117А установлены предельно допустимые режимы работы и допустимое время работы на форсированных режимах. Признаками разрушения обрыва лопаток ротора компрессора в полете являются: резкий хлопок и удар в двигателе, появление повышенной вибрации (тряски), падение оборотов турбокомпрессора и повышение t3 до величин, выше допустимых для данного режима. Если частичное разрушение лопатки вызывает помпаж, то появляются его признаки, изложенные выше. Если кусок разрушившейся лопатки попадает в зазор между торцами остальных лопаток и корпусом, происходит заклинивание или затормаживание ротора. В результате уменьшения частоты вращения ротора топливная автоматика увеличивает подачу топлива в камеру сгорания, что приводит к срыву пламени и самовыключению двигателя.

При обнаружении в полете разрушения лопаток компрессора двигатель следует немедленно выключить.

Профилактическими мероприятиями, направленными на предотвращение разрушения лопаток компрессора, являются: строгое соблюдение правил технической эксплуатации компрессора техническим и летным составом, тщательный визуальный и инструментальный контроль состояния лопаток, проверка времени выбега ротора турбокомпрессора экипажем при останове двигателя, строгое соблюдение рекомендаций по эксплуатации двигателей в условиях запыленного воздуха и условиях возможного обледенения входной части.

Разрушение подшипников опор, что происходит по следующим эксплуатационным причинам.

Выборка радиальных зазоров подшипников качения при запуске двигателя в условиях низких температур без предварительного обогрева. Обычно диаметр беговой дорожки внутреннего кольца подшипника при напрессовке на шейку вала увеличивается на 55-70% от величины номинального натяга, отчего соответственно выбирается зазор в подшипнике и при низких температурах наружного воздуха может быть выбран полностью. В процессе работы двигателя зазоры в подшипнике увеличиваются вследствие нагрева подшипника и вала.

Масляное голодание (недостаточность смазки), при котором шарики (ролики) подшипника нагреваются значительно быстрее колец, так как имеют меньшую массу, а кроме того, от колец тепло частично отводится через посадочные поверхности. При нагреве шарики расширяются и заклинивают между кольцами, что приводит к их оплавлению.

Признаками разрушения подшипников в полете является: увеличение вибрации двигателя, резкое повышение температуры масла и температуры газа перед турбиной, появление характерного скрежета и падение nтк. Разрушение подшипников также определяется по уменьшению выбега турбокомпрессора, по неравномерности усилий, необходимых для ручной прокрутки турбокомпрессора, и наличию металлической стружки на маслофильтре. При обнаружении разрушения подшипников в процессе подготовки двигателя к запуску запуск и дальнейшая эксплуатация его не разрешается. если разрушение подшипников обнаружено в полете, двигатель следует выключить.

Профилактическими мероприятиями, направленными на предотвращение разрушения подшипников, являются: предварительный подогрев двигателя перёд запуском от аэродромного подогревателя при температуре наружного воздуха ниже -2510 С,

3.2 ДЕФЕКТЫ НАРУШАЮЩИЕ РАБОТУ КАМЕРЫ СГОРАНИЯ

1.Срыв пламени и прекращение горения топливовоздушной смеси, происходящее вследствие помпажа компрессора, резкого уменьшения расхода воздуха при попадании на вход в двигатель посторонних предметов, уменьшения давления топлива перед форсунками ниже допустимой величины, резкого падения частоты вращения турбокомпрессора, особенно на большой высоте.

Определяется дефект по самовыключению двигателя.

Камера сгорания двигателя ТВ2-117АГ

2.Прогар жаровой трубы и корпуса камеры сгорания, что может происходить по следующим основным причинам:

§из-за неполного сгорания топлива (например, при помпаже) и отложения нагара, изолирующего отдельные участки жаровой трубы от охлаждающего воздуха, что приводит к местным перегревам и, как следствие, к появлению местных температурных напряжений, короблению, трещинам и прорыву газов с высокой температурой во вторичный воздух; аналогичное явление может быть вызвано применением сортов топлива, не рекомендуемых для данного типа двигателя;

§при превышении установленного времени непрерывной работы на форсированных режимах или при работе двигателя на температурном режиме выше допустимого;

§из-за засорения или обгорания топливной форсунки, а также неудовлетворительного распыла топлива, вследствие чего факел пламени направлен непараллельно оси камеры сгорания и может достигать секций жаровой трубы.

3.Деформация жаровой трубы, корпуса, камеры сгорания и, как следствие, прогар или появление трещин, что может происходить по следующим причинам:

§при запуске двигателя в условиях низких температур (ниже -25° С) без предварительного прогрева от аэродромного подогревателя;

§из-за резких тепловых ударов, возникающих при выводе непрогретого двигателя на повышенный режим или при выключении двигателя без предварительного охлаждения на режиме малого газа из-за превышения установленного времени непрерывной работы на форсированных режимах или при работе двигателя на температурном режиме выше допустимого.

Нарушение работы камеры сгорания в полете приводит к уменьшению мощности двигателя и, для поддержания ее - к автоматическому увеличению подачи топлива в двигатель. При этом значительно увеличивается температура газа перед турбиной. Если нарушение работы камеры сгорания сопровождается прогаром жаровой трубы и корпуса, то возможны возникновение пожара и срабатывание противопожарной системы. При обнаружении этого явления двигатель следует немедленно выключить.

В процессе технического осмотра вероятность прогара корпуса определяется по наличию мест с явными цветами побежалости или трещин. Общее изменение окраски корпусов камеры сгорания, выполненных из титановых сплавов, в процессе эксплуатации не является признаком перегрева, а является свойством сплавов.

Профилактическими мероприятиями, направленными на предупреждение вышеизложенных дефектов, являются строгое выполнение основных правил технической и летной эксплуатации двигателя, применение установленных сортов топлива и тщательный контроль основных параметров, определяющих работоспособность двигателя.

3.3 НЕИСПРАВНОСТИ ТУРБИН И ИХ ПРЕДУПРЕЖДЕНИЕ

Охлаждение турбин : Увеличение надежности и рока службы турбин достигается охлаждением их наиболее нагруженных в тепловом отношении деталей. Охлаждение деталей турбин осуществляется вторичным воздухом и воздухом, забираемым за VIII ступенью компрессора.

Вследствие большой зависимости механических и тепловых нагрузок, действующих на детали турбин, от эксплуатационных факторов и полетных условий в процессе эксплуатации двигателей возможно появление ряда неисправностей. Наиболее характерными из них являются следующие.

Турбина двигателя ТВ2-117АГ

1. Вытяжка рабочих лопаток турбины . Вследствие длительного воздействия на рабочие лопатки центробежных сил в условиях высокой температуры в них могут возникать пластические деформации, выражающиеся в постепенном удлинении лопаток. Это явление называется ползучестью материала. Вытяжка рабочих лопаток вызывает уменьшение радиального зазора между торцами лопаток и металлокерамическими вставками корпуса и может приводить к заеданию лопаток во вставках и поломку лопаток или вставок. Расчетами и экспериментальными исследованиями установлено, что при строгом выдерживании температурных режимов и режимов по частоте вращения в течение установленного. для данного двигателя заводом-изготовителем срока службы вытяжка турбинных лопаток находится в допустимых пределах. Основными причинами вытяжки рабочих лопаток в процессе эксплуатации двигателя являются:

§повышение температуры газа перед турбиной выше допустимой в результате неисправностей в системе автоматического регулирования подачи топлива и в системе синхронизации режимов работы двухдвигательной вертолетной силовой установки, ранней подачи рабочего топлива в двигатель при запуске, помпажа компрессора и т. п.;

§превышение допустимого времени непрерывной работы двигателя на форсированных режимах. Так как при работе двигателя на номинальном и взлетном режимах не только температура газа перед турбиной максимальна или близка к максимальной, но и механические нагрузки на

§лопатки (особенно от действия центробежных сил) достигают наибольших значений; поэтому время работы на этих режимах ограничивается.

Необходимо также иметь в виду, что при работе двигателя на малом газе температура газа перед турбиной высокая, а эффективность системы охлаждения турбины, вследствие низкого давления воздуха, создаваемого компрессором, недостаточна. По этой причине время непрерывной работы двигателя на малом газе также ограничивается.

Свободная турбина двигателя ТВ2-117АГ

При чрезмерной вытяжке лопаток заедание их во вставках корпуса обнаруживается по увеличению усилий, необходимых для ручной прокрутки ротора турбины. Очень важным фактором, позволяющим экипажу своевременно обнаружить недопустимую вытяжку рабочих лопаток, является уменьшение времени выбега ротора после остановки двигателя. При значительной вытяжке лопаток и появлении на металлокерамических вставках дорожек, выработанных на металлокерамических вставках гребешками лабиринтов лопаток, происходит торможение вращения ротора и в ответ на это автоматически увеличивается подача топлива в двигатель для сохранения постоянными мощности и частоты вращения ротора. Это приводит к росту температуры газа существенно выше допустимой. Заедание лопаток в вставках корпуса может быть обнаружено также по появлению постороннего звука в роторе двигателя.

2. Обгорание сопловых и рабочих лопаток турбины. Это происходит из-за нарушения процесса сгорания топлива в камере сгорания, значительного увеличения температуры газа и при большой неравномерности температурного поля перед турбиной. Основными причинами создания неравномерного поля температур газа перед турбиной являются помпаж компрессора и неправильная работа камеры сгорания. Обгорание лопаток приводит к изменению сопротивления проточной части турбины потоку газа, уменьшению мощности и, как следствие, к еще большему росту температуры газа перед турбиной. Это еще больше усугубляет работу лопаток и может приводить к их разрушению.

Обгорание лопаток турбины обнаруживается по росту температуры газа перед турбиной, выбрасыванию из выхлопного устройства пучков искр, а при техническом осмотре - по характерным- следам оставляемых частицами металла на внутренней поверхности проточной части выходного устройства и внешнему виду лопаток последней ступени турбины, просматриваемых через выходное устройство.

3. Обрыв или разрушение рабочих лопаток турбины. Этот дефект является одним из самых опасных. Основные эксплуатационные причины обрыва или разрушения турбинных лопаток следующие.

Заброс температуры газа перед турбиной при запуске двигателя или вывод непрогретого двигателя на повышенный режим. При этом, как было изложено выше, профиль лопатки нагревается неравномерно и возникающие температурные напряжения могут вызывать образование микротрещин, которые значительно снижают запас прочности материала лопатки.

Попадание на рабочие лопатки посторонних предметов или элементов разрушившихся деталей проточной части двигателя(компрессора, камеры сгорания, соплового аппарата и строек опор ротора).

Повышенная вибрация двигателя или силовой установки, что приводит к усталостному разрушению лопаток. Вибрация двигателя может возникать вследствие частичного разрушения лопаток компрессора, помпажа компрессора, обгорания или частичного разрушения лопаток турбины. Усталостное разрушение лопатки может происходить у ножки или по перу. Положение опасного сечения зависит от величины напряжений, от предела усталостной прочности, на величину которых влияет неравномерность температуры по высоте лопатки, а также местоположения забоин и температурных трещин. Обычно опасное сечение находится на расстоянии 1/3 высоты лопатки. Иногда рабочие лопатки разрушаются по замковой части.

Усталостное разрушение лопатки происходит не сразу. Образовавшаяся трещина распространяется постепенно вглубь сечения лопатки, а когда сечение станет недостаточно прочным для восприятия центробежных усилий, лопатка обрывается. Время развития трещины составляет примерно от 5 до 25 ч работы двигателя.

Вытяжка рабочих лопаток, происходящая по причинам, изложенным в п. 1. Обрыв лопаток вследствие их вытяжки происходит с образованием шейки и тоже не сразу.

Вероятность обрыва и разрушения рабочих лопаток необходимо определять заблаговременно, а двигатель, предрасположенный к таким дефектам, должен сниматься с эксплуатации. Основными способами определения вероятности разрушения лопаток турбины при осмотре перед взлетом являются:

§визуальный осмотр проточной части выходного устройства двигателями проточной части турбины в пределах видимости;

§ручная прокрутка ротора турбокомпрессора и ротора свободной турбины (прокрутка ротора свободной турбины производится за лопатки последней ступени против хода вращения для отключения муфты свободного хода);

§проверка времени выбега роторов двигателя при его остановке и прослушивание на предмет обнаружения посторонних шумов (при заедании ротора время выбега меньше допустимого и может прослушиваться посторонний шум).

Обрыв рабочей лопатки турбины в полете сопровождается резким хлопком в двигателе и появлением шлейфа сизого дыма из выходного устройства. Падение частоты вращения в начальный момент может не происходить. Дальнейшее развитие дефекта зависит от величины оторвавшейся части лопатки и последствий, которые этот обрыв вызывает. Обычно оторвавшаяся часть разрушенной лопатки, попадая в зазор между корпусом турбины и торцами следующих по потоку лопаток, вызывает изгиб этих лопаток и выпучивание корпуса турбины или разрушение металлокерамических вставок. Кусок разрушившейся лопатки движется в направлении выходного устройства и вызывает аналогичные деформации лопаток последующих ступеней.

Если двигатель продолжает работать, но на меньшей частоте вращения, то при этом увеличивается подача топлива и растет температура газа перед турбиной. При значительном падении частоты вращения и соответствующем переобогащении смеси в камере (из-за увеличения подачи топлива) происходит срыв пламени и двигатель самовключается.

Если оторвавшийся кусок лопатки вызывает заклинивание остальных, то двигатель сразу выключается.

При обрыве турбинной лопатки на высоких режимах работы двигателя сила удара лопатки о корпус настолько велика, что она пробивает его и может вызвать разрушение элементов силовой установки и элементов конструкции вертолета. В<этом случае не исключена возможность возникновения пожара в отсеках силовой установки, если повреждаются топливные и масляные коммуникации.

При обнаружении в полете признаков разрушения или обрыва турбинных лопаток двигатель необходимо выключить.

4. Разрушение подшипников опор роторов турбины. Причины и профилактические меры против разрушения подшипников описаны в гл. П.

Основными профилактическими мероприятиями, направленными на предупреждение дефектов турбинного узла двигателя, является:

§ручная прокрутка и визуальный осмотр проточной части двигателя перед каждым запуском на предмет обнаружения посторонних предметов;

§строгое соблюдение правил запуска, прогрева и охлаждения двигателя;

§закрытие проточной части двигателя заглушками после останова для уменьшения вентиляции и более равномерного охлаждения проточной части двигателя;

§строгое соблюдение рекомендаций для летной эксплуатации по выдерживанию температурных режимов и максимально, допустимой частоты вращения на различных этапах полета;

тщательный контроль параметров, характеризующих работу двигателя в полете, и своевременное обнаружение предпосылок к отказам.

3.4 УСЛОВИЯ РАБОТЫ И ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ВЫХЛОПНОГО УСТРОЙСТВА ПРИ ЭКСПЛУАТАЦИИ

В процессе работы двигателя на детали выхлопного устройства действуют:

§радиальные и осевые силы, вызванные перепадом давлений; величина их в вертолетных ГТД незначительна;

§крутящий момент, который передается на выходной патрубок от стоек, спрямляющих поток газа за турбиной;

§изгибающий момент, который возникает от действия инерционных сил поворота газового потока;

§вибрационные нагрузки, которые передаются с корпуса двигателя и возникают вследствие неравномерного истечения газов;

§тепловые нагрузки, достигающие наибольшей величины в момент запуска и останова двигателя.

Надежность выхлопного устройства обеспечивается его охлаждением путем эжектирования атмосферного воздуха через отверстия, выполненные в конце обтекателя.

Выхлопное устройство двигателя ТВ2-117АГ

Характерными неисправностями деталей выхлопных устройств вертолетных ГТД являются следующие:

1. Трещины выхлопного патрубка. Обычно трещины появляются вблизи или в местах сварочных швов, у фланцев крепления или на самих фланцах. Причинами образования трещин может быть вибрационное горение в камере сгорания, частичное разрушение лопаток роторов и увеличение вибрации двигателя, а также увеличение вибрации вследствие нарушения соосности валов двигателя и вертолетного редуктора нарушении соосности косвенно можно судить по потемнению масла в маслосистеме двигателя.

Коробление и деформация отдельных участков выхлопного патрубка, приводящие к возникновению трещин. Трещины возникают в основном из-за больших термических напряжений, достигающих максимальной величины при запуске и останове двигателя. Опасность возникновения трещин заключается в том, что развитие их может привести к выпадению участков материала. При этом газы, выходящие из двигателя с высокой температурой, могут попадать в отсек вертолетного редуктора, что приводит к возникновению пожара.

Своевременное выявление возникшего дефекта при техническом осмотре двигателя перед полетом может предотвратить серьезную аварию или отказ силовой установки в полете. Обнаруженные трещины засверливаются и при необходимости завариваются.

Разрушение выходного устройства в полете приводит к возникновению больших гидравлических сопротивлений потоку газов, выходящих из двигателя и, как следствие к увеличению температуры газа перед турбиной. При попадании газа в отсек главного редуктора происходит резкое увеличение температурного режима редуктора и возможно срабатывание сигнализации и первой (автоматической) очереди противопожарной системы. Двигатель в этом случае следует выключить.

Основными профилактическими мероприятиями, направленными на предотвращение разрушения выходных устройств двигателей являются:

строгое выполнение требований руководящих документов, регламентирующих работу двигателей по температурным режимам; уменьшение вентиляции проточной части двигателя после его выключения, особенно в условиях эксплуатации при низких температурах наружного воздуха, путем установки в воздухозаборник и выходной патрубок специальных заглушек.

5 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ СИСТЕМЫ СМАЗКИ ПРИ ЭКСПЛУАТАЦИИ И ИХ ПРЕДУПРЕЖДЕНИЕ

Система смазки двигателя ТВ2-117АГ

Опыт эксплуатации двигателей показывает, что наиболее вероятны следующие неисправности системы смазки и суфлирования.

Падение давления масла на выходе из нагнетающего масляного насоса. При этом резко уменьшается количество масла, поступающего на смазку подшипников опор и зубчатых передач двигателя. Наиболее неблагоприятно падение давления масла сказывается на работе подшипников, которые при недостаточной смазке могут разрушаться.

Основными причинами падения давления масла являются:

§засорение фильтра тонкой очистки масла механическими примесями, частицами нагара или другими продуктами коксования масла;

§подсос воздуха через негерметичные соединения на линии масляный бак - нагнетающий масляный насос; в этом случае при неработающем, двигателе в месте негерметичности возможно появление подтекания масла;

§недостаточное количество масла в масляном баке вследствие недостаточной заправки, утечек, большого расхода масла при работе двигателя, из-за недостаточной откачки масла (частичная закупорка маслорадиатора);

§уменьшение вязкости масла вследствие его перегрева или изменения химического состава; при этом Количество масла, поступающего в двигатель, увеличивается, смазывающая способность масла ухудшается и обеспечивается нормальная смазка трущихся поверхностей.

§заедание редукционного клапана в открытом положении, чаще всего из-за попадания под его фаску частиц нагара или случайных механических примесей; при этом давление масла на повышенных режимах работы Двигателя может сохраняться в допустимых пределах, но при уменьшении режима резко уменьшается, так как через клапан непрерывно перепускается масло из литии нагнетания обратно на вход в насос;

§образование воздушной пробки в трубопроводе подвода масла к нагнетающему насосу или закупорка суфлирующей трубки маслобака; в этом случае падение давления масла (или отсутствие давления) наблюдается сразу после запуска двигателя.

Как показывает опыт эксплуатации, воздушная пробка на входе в нагнетающий насос образуется при длительной стоянке двигателя, после замены масла в маслосистеме после съемки для осмотра масляного фильтра, при заедании в открытом положении запорного клапана и при работе двигателя с недостаточным количеством масла в баке. В зависимости от причины, вызвавшей неисправность, падение давления масла в маслосистеме двигателя может быть устранено следующими способами:

§промывкой масляного фильтра; если обнаруживается значительное загрязнение масла механическими примесями или продуктами коксования, то необходима замена масла;

§устранением негерметичности соединений на линии маслобак - нагнетающий насос;

§дозаправкой маслом бака до установленного уровня;

§заменой масла в случае обнаружения изменения его химического состава или значительного загрязнения; промывкой редукционного клапана, а при необходимости и его регулировкой; подогревом масла перед запуском двигателя при температурах ниже минус 40° С; удалением воздушной пробки из магистрали подвода масла к нагнетающему насосу обычно путем заливки небольшого количества масла на вход в насос через полость фильтра заливочным шприцем.

вертолёт двигатель отказ посадка

Повышение температуры масла на выходе из двигателя. При этом значительно уменьшается отвод тепла от подшипников и других трущихся деталей двигателя, что может приводить к разрушению подшипников опор двигателя.

Причинами повышения температуры масла могут быть:

недостаточное количество масла в баке, вследствие чего время циркуляции его уменьшается и увеличивается количество тепла, отводимого маслом от смазывающих узлов; для устранения этой причины необходимо дозаправить масляный бак маслом до установленного уровня; засорение сот маслорадиатора с внешней стороны, для устранения чего необходимо очистить соты радиатора вручную;

недостаточный обдув маслорадиатора вследствие неправильной установки поворотных лопаток направляющего аппарата вентилятора; устраняется дефект правильной регулировкой поворотных лопаток;

неисправность маслорадиатора, т. е. термостатический клапан радиатора перепускает масло мимо охлаждающих сот в масляный бак; такой маслорадиатор подлежит замене.

  1. Повышенный расход масла из системы двигателя. Эта неисправность может не вызывать внешних нарушений в работе двигателя и определяется практически после полета при проверке уровня масла в баке. Однако значительный расход масла может вызвать падение давления и повышение температуры масла, т. е. нарушение нормальной работы маслосистемы.

Система суфлирования двигателя ТВ2-117АГ

Причины повышенного расхода масла могут быть следующие:

1. Течи масла во внешних соединениях маслопроводов и агрегатов маслосистемы. Места течей масла определяются при техническом осмотре силовой установки после полета по наличию следов подтекания масла. Подтекание масла из внешних соединений элементов маслосистемы не допускается. При обнаружении негерметичности соединений маслопроводов или следов подтекания масла из-под фланцев крепления агрегатов неисправность устраняется путем подтяжки гаек, замены уплотнительных прокладок или замены соответствующих элементов маслосистемы.

  1. Выброс масла из системы суфлирования. При этом не только увеличивается расход масла, но растет его температура с последующим падением давления. Выброс масла может происходить вследствие попадания воды в масло, изменения химического состава масла, прорыва воздуха и газов внутрь масляных полостей из-за разрушения уплотнений или загрязнения жиклеров системы суфлирования предмасляных полостей. В отдельных случаях выброс масла может быть вызван неисправностью воздушно-масляного радиатора или откачивающего масляного насоса.
  2. Интенсивное проникновение масла в газовоздушный поток двигателя из-за повышенного износа уплотнений масляных полостей или загрязнения жиклеров системы суфлирования масляных полостей. При сгорании масла в газовоздушном потоке на деталях проточной части двигателя образуется значительный слой нагара, который ухудшает охлаждение деталей и может вызвать их перегрев.

При обнаружении повышенного расхода масла вследствие проникновения его в газовоздушный тракт двигателя проверяется состояние системы суфлирования, и в случае неисправности ее двигатель подлежит снятию с вертолета.

В полете, как было указано выше, неисправности системы смазки обнаруживаются по падению давления и росту температуры масла.. Если давление масла уменьшается до 2 кгс/см2 и увеличивается его температура, то во избежание разрушения подшипников опор двигатель следует выключить. В отдельных случаях не исключена возможность отказа системы замера давления или температуры масла. Если, например, стрелка указателя давления масла не показывает давления (зашла за электрический нуль), но температура масла нормальная и двигатель продолжает работать без внешних, признаков разрушения, то это является признаком отказа прибора. Двигатель в этом случае выключать не следует, но необходимо усилить контроль за его работой.

Резкое падение давления масла может быть следствием разрушения масляных коммуникаций. Так как емкость маслосистемы двигателя небольшая, то все масло может выйти из системы в течение 50-60 с, а роторы двигателя могут заклиниться. Поэтому при падении давления масла необходимо внимательно контролировать температуру масла и температуру газа перед турбиной которая в случае разрушения подшипников и торможения ротора увеличивается вследствие увеличения регуляторами подачи топлива). В случае отклонения этих параметров от установившихся для данного режима значений или появления постороннего шума двигатель следует выключить.

Слив масла из масляной системы двигателей через блок сливных кранов:

Масляный радиатор; 2- заглушка; 3- блок сливных кранов; 4- масляный бак; 5- сливной кран масляного бака; 6- пробка заливной горловины; 7- рукоятка блока сливных кранов; 8- тара для масла; 9- заглушка от загрязнения трубопровода слива

3.7 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ТОПЛИВНОЙ СИСТЕМЫ

Агрегаты топливной системы двигателя ТВ2-117АГ

Нарушение нормальной работы системы топливопитания, как правило, приводит к изменению подачи топлива в камеру сгорания, что соответствующим образом сказывается на работе двигателя. Другими признаками нарушения нормальной работы системы топливопитания могут быть: изменение давления топлива, определяемое по указателю манометра УИЗ-3, подтекание топлива из-за негерметичности системы, определяемое визуально пли но запаху.

Из неисправностей системы топливопитания наиболее вероятны следующие.

1. Отказ подкачивающих насосов расходного бака (практически отказ электрического привода насосов). В этом случае гаснет табло «Расход, бак» и частота вращения турбокомпрессоров двигателей падает на 2-5%, а несущего винта - на 1, также возможно падение давления топлива перед рабочими форсунками по измерителю УИЗ-3. Отказ подкачивающих насосов при полете на высотах более 1000 м может сопровождаться выключением одного или двух двигателей. Происходит это вследствие того, что на больших высотах подача топлива в двигатель дросселируется регуляторами до минимального значения по устойчивости горения в камере сгорания. Кроме того, пространство над топливом в баках сообщается с атмосферой и при уменьшении атмосферного давления уменьшается гидростатический подпор топлива на входе в насос высокого давления. В этом случае даже незначительное уменьшение давления топлива на входе в насос и, соответственно, перед рабочими форсунками может приводить к срыву пламени и самовыключению двигателя. Поэтому, если отказ топливоподкачивающих насосов сопровождается только падением частоты вращения турбокомпрессоров двигателей и несущего винта, необходимо снизиться до высоты 400-500 м над рельефом местности, уменьшить общий шаг несущего винта до

рекомендуемой частоты вращения винта и продолжать полет до места возможного выполнения нормальной посадки. Если отказ насосов сопровождается отказом одного из двигателей, то необходимо снизиться до высоты порядка 500 м, произвести запуск выключившегося двигателя. Полет с отказавшими насосами не безопасен и поэтому необходимо совершить посадку на ближайшей посадочной площадке. При отказе обоих двигателей попытку запуска их рекомендуется производить в том случае, если время запуска двигателя и выхода на рабочий режим меньше времени снижения вертолета в режиме авторотации. Так, для вертолета Ми-8 время запуска и выхода двигателя на рабочий режим соответствует времени снижения вертолета в режиме авторотации с высоты порядка 1000 м.

.Заедание клапана дренажа второго контура рабочих форсунок в открытом положении. Основной причиной этой неисправности является попадание под фаску клапана твердых частиц смолы или продуктов механического износа насоса высокого давления. В этом случае двигатель не увеличивает частоты вращения с режима примерно 66% при повороте рукоятки коррекции вправо (при перемещении рычага управления насосом-регулятором на увеличение режима работы двигателя) вследствие недостаточного поступления топлива к форсункам. Определяется дефект по наличию большого количества топлива в дренажном бачке. При длительной работе с такой неисправностью дренажный бачок переполняется топливом, которое сливается из бачка в атмосферу через дренажную трубку. Устраняется дефект заменой блока дренажных клапанов.

3.Засорение рабочих топливных форсунок. Дефект является следствием наличия большого количества механических примесей в топливе и засорения фильтра тонкой очистки. В этом случае, как было указано выше, топливо поступает в систему двигателя через фильтр грубой очистки и перепускной клапан. Механические примеси топлива засоряют фильтрующую часть форсунок, которые также могут засоряться продуктами износа плунжерных: пар насоса высокого давления при выключении двигателя пожарным краном, или смолистыми веществами, осаждающимися на деталях топливорегулирующей аппаратуры при применении недоброкачественного топлива. Опасность засорения форсунок заключается в неравномерной подаче ими топлива в камеру сгорания и получении неравномерного поля температур газа перед турбиной. Это может приводить к разрушению турбины, а в отдельных случаях - к прогару жаровой трубы камеры сгорания. Обнаруживается дефект по увеличению давления топлива перед форсунками и одновременному «зависанию» или уменьшению температуры газа. В случае, если давление топлива превысит 60 кгс/см2, двигатель следует выключить и перейти на однодвигательный полет.

8 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ СИСТЕМЫ РЕГУЛИРОВАНИЯ И УПРАВЛЕНИЯ И ИХ ПРЕДУПРЕЖДЕНИЕ

Неисправности системы регулирования и управления вызывают нарушение нормальной работы двигателей и определяются по отклонениям от установленных значений основных параметров, характеризующих работу силовой установки вертолета. Опыт эксплуатации вертолета Ми-8 показывает, что основные неисправности системы регулирования двигателей вызывают следующие нарушений работы силовой установки:

1. Двигатель в процессе запуска самопроизвольно выходит на повышенный режим. Явление это чрезвычайно опасно и недопустимо, так как сопровождающее его резкое повышение температуры-газа перед турбиной может вызвать разрушение или деформацию» ее основных узлов. Неисправность возникает вследствие неправильной установки рычагов управления (рычага «шаг-газ», рукоятки коррекции или рычага раздельного управления) в исходное положение перед запуском двигателя, неправильной регулировки-насоса-регулятора или заедания золотниковых пар регуляторов. Наиболее частой причиной этой неисправности является залипание золотника клапана минимального давления в закрытом положении. Такое явление замечается при заправке топливом, не обладающим высокой химической стабильностью или содержащим большое количество водной эмульсии. Особенно способствуют залипанию золотников смолистые вещества, образующиеся в топливе при длительной стоянке двигателя.

При обнаружении такой неисправности запуск двигателя необходимо прекратить и решить вопрос о возможности дальнейшей эксплуатации топливного насоса-регулятора или его замене. В случаях крайней необходимости дефект можно попытаться устранить повторением запуска. При этом переменное давление, действующее на торец золотника может сдвинуть его с места, и в дальнейшем он будет работать нормально.

2.Несинхронная работа двигателей на установившихся режимах. При работе автоматической системы поддержания постоянным заданного значения Nтк разность частот вращения компрессоров двигателей («вилка») не должна превышать 2%.Эту задачу решает синхронизатор оборотов СО-40 Основными причинами разнорежимности работы двигателей являются следующие:

§неправильная регулировка системы управления «шаг-газ». При этом заведомо насосы-регуляторы настраиваются на различную подачу топлива в двигатели. Устраняется неисправность проверкой и регулировкой системы «шаг-газ».

§негерметичность соединительных шлангов воздушной системы синхронизаторов мощности или замерзание конденсата в них. Последняя неисправность наиболее характерна для эксплуатации вертолета при температурах атмосферного воздуха, близких к (УС. Устраняется дефект заменой поврежденных соединительных шлангов и трубок привода воздуха к мембранным устройствам синхронизаторов, подтяжкой мест их подсоединения, а также удалением замерзшего конденсата путем прогрева и продувки шлангов воздухом. С целью профилактики образования и замерзания конденсата перед полетом вертолета необходимо проверять отстойник шлангов и удалять из них скопившуюся влагу или продувать шланги, если отстойники не установлены.

Несинхронность работы двигателей необходимо выявлять в процессе опробования двигателей на земле. Если при опробовании на основных режимах обнаруживается разность в частотах вращения турбокомпрессоров более 2%, следует двигатели выключить и устранить неисправности. При появлении «вилки» более 2% в полете необходимо изменением общего шага подобрать такой режим работы двигателей, при котором разнорежимность будет в пределах допуска. Несинхронность двигателей может расти вследствие неисправности проточной части одного из двигателей (например, чрезмерной вытяжки турбинных лопаток, разрушения подшипников) или разрушения топливопроводов системы регулирования. Поэтому, когда изменение режима работы двигателей не устраняет несинхронности, а наоборот, приводит к ее увеличению, необходимо выявить неисправный двигатель и выключить его.

3.Раскачка частоты вращения турбокомпрессоров. Эта неисправность может быть вызвана следующими причинами:

§неустойчивой работой системы автоматического поддержания постоянства оборотов или регулятора оборотов турбокомпрессора вследствие образования во внутренних топливных полостях регуляторов воздушных пробок или паров топлива; обычно эта неисправность имеет место после замены топлива в системе или осмотра топливных фильтров;

§неустойчивой работой системы синхронизации мощности вследствие разгерметизации воздушных соединительных шлангов синхронизаторов, образования конденсата в этих шлангах или заедания золотников;

Самарский государственный аэрокосмический университет имени академика.

Кафедра: «Техническая эксплуатация летательных аппаратов и двигателей».

Общие данные двигателя ТВ2-117.

Учебное пособие.

(Компьютерный вариант)

Составил:

Компьютерная обработка: студенты и

Пособие предназначено для студентов 2-го курса специальности 130300, изучающих конструкцию двигателя ТВ2-117 по дисциплине «Авиационная техника».

Размер файла: 1175 кб.

Файл помещен в компьютере «Server» ауд. 113-5

Имя файла: E:\ ПОСОБИЯ \ ТВ2-117 \ ТЕМА1 \ тема1.doc

Допущено для использования

в учебном процессе.

Протокол заседания кафедры «ЭЛАиД»

№ ______ от «___» ___________ 2004 г.

Самара 2004 г.

1.1. ОБЩИЕ СВЕДЕНИЯ

Турбовальный двигатель со свободной турбиной (ТВаД) ТВ2-117А предназначен для установки на вертолет Ми-8. Силовая установка вертолета Ми-8 состоит из двух двигателей ТВ2-117А и одного главного редуктора ВР-8А (рис. 1.1).

Рис. 1.1. Главный редуктор и двигатели силовой установки вертолета:

1 - главный редуктор; 2 - двигатель правый; 3 - двигатель левый

Особенностью двигателя ТВ2-117А является наличие в нем свободной турбины (турбины винта) для привода вала несущего винта вертолета, не связанной кинематически с турбокомпрессорной частью двигателя, что дает ряд конструктивных и эксплуатационных преимуществ:

а) позволяет получать желаемую частоту вращения вала несущего винта вертолета независимо от частоты вращения ротора турбокомпрессора двигателя;

б) облегчает раскрутку турбокомпрессора при запусках двигателя;

в) позволяет получать оптимальные расходы топлива при различных условиях эксплуатации двигателя;

г) исключает необходимость фрикционной муфты (муфты включения) в силовой установке вертолета.

Силовая установка вертолета имеет систему автоматического поддержания частоты вращения несущего винта с синхронизацией мощности обоих двигателей, выполняющую следующие функции:

а) автоматическое поддержание оборотов несущего винта в заданных пределах путем изменения мощности двигателей в зависимости от потребляемой мощности несущего винта;

б) поддержание одинаковой мощности каждого из двух параллельно работающих двигателей;

в) автоматическое увеличение мощности одного из двигателей при неисправности другого.

На вертолете имеются рычаг «Шаг-Газ» для совместного управления обоими двигателями и шагом несущего винта, а также рычаги раздельного управления двигателями.

Рис.1.2. Двигатель ТВ2-117А (вид слева):

1 - агрегат КА-40; 2 - штуцер суфлирования; 3 - агрегат НР-40ВА; 4 - стартер-генератор ГС-18МО; 5 - агрегат ИМ-40; 6 - пусковой воспламенитель; 7 - коллектор термопар; 8 - трубопровод суфлирования; 9 - кронштейн датчика давления топлива; 10 - штуцер подвода топлива в агрегат НР-40ВА; 11 - гидромеханизм; 12 - клапан перепуска воздуха; 13 - блок электромагнитных клапанов; 14 - патрубок суфлирования II опоры роторов двигателя; 15 - противопожарный коллектор; 16 - дренаж; 17 - агрегат РО-40ВА

Рис.1.3. Двигатель ТВ2-117А (вид справа):

1 - ушко для подвески двигателя; 2 - агрегат СО-40; 3 - фланец отбора воздуха для нужд вертолета; 4 - масляный фильтр; 5 - штуцер подвода масла из масляного бака; 6 -фланец суфлирования III опоры роторов двигателя; 7 - колодка термопар; 8 - блок дренажных клапанов; 9 - патрубок суфлирования II опоры роторов двигателя; 10 - клапан перепуска воздуха; 11 - противообледенительный клапан; 12 - гидромеханизм; 13 - штуцер выхода масла из двигателя; 14 - кронштейн датчика давления масла

Двигатель ТВ2-117А (рис. 1.2, 1.3, 1.4 и 1.5) состоит из следующих основных узлов и систем:

· осевого десятиступенчатого компрессора;

· кольцевой камеры сгорания е восемью головками для форсунок;

· двухступенчатой осевой турбины компрессора;

· двухступенчатой осевой свободной турбины;

· выхлопного устройства;

· главного привода передачи крутящего момента с вала ротора свободной турбины двигателя на главный редуктор вертолета;

· приводов передачи к агрегатам двигателя;

· системы топливопитания и регулирования;

Количество. . . . . . . . . . . . . . . . . . . один комплект на два двигателя

40. Стартер-генератор постоянного тока:

Условное обозначение. . . . . . . . . . . . . . . . С-18МО

Количество. . . . . . . . . . . . . . . . . . . 1

Передаточное число привода. . . . . . . . . . . . . 0,41

Направление вращения валика стартера-генератора. . . . . . левое

41. Система зажигания:

Тип. . . . . . . . . . . . . . . . . . . . . . низковольтная с емкостным разрядом

Условное обозначение агрегата зажигания. . . . . . . . . СКНА-22-2А

Воспламенение смеси. . . . . . . . . . . . . . . . через пусковой воспламенитель с

запальной свечой СП-18УА

Количество воспламенителей. . . . . . . . . . . . . 2

42. Электросистема запуска. . . . . . . . . . . . . . . 24-вольтовая с переключением на 48 В

43. Количество запусков без подзарядки аккумуляторных батарей. . 5, не менее

44. Время, обеспечивающее выход двигателя на взлетный режим

с момента нажатия на пусковую кнопку (не более):

На земле. . . . . . . . . . . . . . . . . . . . 5 мин

В полете. . . . . . . . . . . . . . . . . . . . 1 мин

45. Максимально допустимая температура газов

перед турбиной компрессора при запуске (по прибору) . . . . . . 600° С, не выше

46. Выбег - время вращения ротора компрессора

с момента прекращения подачи топлива в двигатель. . . . . . . 40 с, не менее

47. Время приемистости от режима малого газа до взлетного режима

(пои перемещении рычага управления за 1-2 с) на земле. . . . . 15 с, не более

Примечания: 1. Время приемистости замеряется о момента начала перемещения рычага управления двигателем с режима малого газа до момента достижения частоты вращения ротора компрессора на 1-1,5% ниже частоты вращения ротора на взлетном режиме.

2. Заброс температуры газов при проверке приемистости допускается на 20° С выше температуры газов на взлетном режиме данного двигателя.

3. На двигатели более раннего изготовления установлены агрегаты ГС-18ТО.

48. Автоматическая противообледенительная система. . . . . . агрегаты управления

противообледенительной системой двигателя устанавливаются на вертолете. На двигателе установлен клапан противообледенительной системы с электромагнитом ЭМТ-244

Место отбора воздуха. . . . . . . . . . . . . . . . из камеры сгорания

Примечание.

При включении противообледенительной системы мощность двигателя уменьшается примерно на 4,5%, а удельный расход топлива увеличивается примерно на 5%.

Приборы контроля работы двигателя

49. Термометр газа перед турбиной компрессора. . . . . . . ИТГ-180Т, включающий измеритель

ИТГ-1Т и 17 сдвоенных термопар Т-80Т

50. Датчик частоты вращения ротора турбины компрессора:

Условное обозначение датчика. . . . . . . . . . . . Д-2

Передаточное число привода. . . . . . . . . . . . . 0,117

Направление вращения валика датчика. . . . . . . . . . левое

ИзмериИТЭ-2 (один на два двигателя)

51. Термометр масла на выходе из двигателя:

Условное обозначение датчика. . . . . . . . . . . . П-2

52. Манометр масла на входе в двигатель:

Условное обозначение датчика. . . . . . . . . . . . ИД-8

53. Манометр топлива перед рабочими форсунками:

Условное обозначение датчика. . . . . . . . . . . . ИД-100

54. Трехстрелочный измеритель от датчиков П-2, ИД-8 и ИД-100 . . УИЗ-3

55. Комплект измерителя

(датчики П-2, ИД-8, ИД-100 и измеритель УИЗ-3) . . . . . . . ЭМИ-3РИ

Примечания:

1. Систему СПЗ-15, агрегат зажигания СКНА-22-2А, усилитель регулятора температуры УРТ-27, измеритель ИТГ-1Т, измеритель ИТЭ-2 и комплект измери­теля ЭМИ-ЗРИ устанавливают на вертолете.

2. Передаточные числа приводов всех агрегатов, кроме агрегата РО-40ВА, даны относительно частоты вращения ротора компрессора.

3. Для агрегатов, установленных на двигателе, направление вращения валика привода (правое или левое) определяется со стороны фланца крепления агрегата.

Режим работы и значения параметров двигателя

56. Режимы работы и значения параметров двигателя при t = 15° С и р0 = 760 мм рт. ст. (H=0 и V=0)

Параметры

«Взлетный»

«Номинальный»

«Крейсерский»

«Малый газ»

Мощность на выходном валу в л. с.

Частота вращения

ротора компрессора в %, не более

несущего винта в %

Температура газа перед турбиной компрессора в °С, не более

Удельный расход топлива в г/(л. с. ∙ ч), не более

Не более 100 кг/ч

Примечания:

1. Частота вращения ротора компрессора, равная 100%, соответствует 21200 об/мин.

2. Частота вращения ротора свободной турбины, равная 100%, соответствует 12000 об/мин.

3. 95,3% по счетчику частоты вращения несущего винта соответствует 12000 об/мин свободной турбины или 192 об/мин несущего винта.

4. На взлетном режиме частота вращения ротора компрессора в зависимости от температуры наружного воздуха изменяется согласно графику, приведенному на рис. 1.11.

5. Частоту вращения ротора компрессора на номинальном и крейсерском режимах в зависимости от температуры наружного воздуха следует выдерживать согласно графику, приведенному на рис. 1.11..

6. В полете частота вращения несущего винта должна быть в пределах 92-97%.

Рис.1.11. График зависимости частоты вращения турбокомпрессора

от температуры атмосферного воздуха при Н=0, V=0:

1 - линия ограничения взлетного режима по максимальному расходу топлива; 2 - линия ограничения взлетного режима по температуре газа перед турбиной; 3 - линия максимально допустимой частоты вращения взлетного режима; 4 - линия максимально допустимой частоты вращения номинального режима; 5 - линия максимально допустимой частоты вращения крейсерского режима

57. Максимально допустимое приведенное число оборотов

турбокомпрессора на всех скоростях и высотах полета. . . . . не более 105%

58. В случае отказа одного двигателя в полете допускается непрерывная работа другого двигателя на взлетном режиме в течение не более одного часа. Двигатель подлежит снятию с вертолета после использования этого режима, независимо от продолжительности времени.

59. Максимально допустимые замеряемые параметры на всех высотах и скоростях (не выше)

______________________

* Максимально допустимая температура газов перед турбиной компрессора на взлетном режиме при работе двигателя на земле - не выше 875° С.

60. При работе двигателя в полете на режимах выше режима малого газа допускаются:

Повышение частоты вращения несущего винта

кратковременное (до 30 с) . . . . . . . . . . . . . . до 103%

Провал частоты вращения кратковременный. . . . . . . . до 89%

На режиме малого газа допускается кратковременное повышение

частоты вращения несущего винта в течение не более 5 с. . . . . до 105%

1.5. КОНТРОЛЬНЫЕ ВОПРОСЫ

Какие основные узлы и системы входят в состав двигателя ТВ2-117? Какие преимущества имеет турбовальный двигатель со свободной турбиной? Почему ТВаД целесообразно устанавливать на вертолеты? Как и почему изменяется мощность двигателя ТВ2-117 с изменением высоты полета, частоты вращения ротора турбокомпрессора? Как и почему изменяется удельный расход топлива ТВ2-117 с изменением высоты полета, частоты вращения ротора турбокомпрессора? Как изменяется давление, температура, скорость воздуха (газа) при прохождении по проточной части двигателя? Как влияют эти параметры на мощность двигателя? На каких режимах может работать двигатель ТВ2-117? Дайте характеристику этим режимам. Какие параметры двигателя и систем контролируются при его работе?

1.6. ЛИТЕРАТУРА

1. Авиационный турбовинтовой двигатель ТВ2-117А и редуктор ВР-8А. Техническое описание. М. Машиностроение 1977г.

2. Авиационный турбовинтовой двигатель ТВ2-117А (ТВ2-117) и редуктор ВР-8А (ВР-8). Руководство по эксплуатации и техническому обслуживанию. М. Машиностроение 1976г.

11 12 16 ..

ТОПЛИВНАЯ СИСТЕМА ДВИГАТЕЛЯ ТВ2-117А (АГ)

8.1 ОБЩИЕ СВЕДЕНИЯ
Топливная система предназначена для обеспечения питания двигателя и регулирования режимов работы двигателя путем изменения подачи топлива в камеру сгорания. Топливную систему двигателя можно разделить на три системы:

1) система высокого давления обеспечивает регулирование подачи топлива в камеру сгорания топлива и включает в себя следующие агрегаты: насос-регулятор НР-40ВА; регулятор частоты вращения Р0-40М; синхронизатор мощности С0-40; исполнительный механизм ограничителя температуры газов ИМ-40; рабочие топливные форсунки;

2) пусковая система служит для подачи пускового топлива при запуске и имеет блок электромагнитных клапанов с клапаном постоянною давления системы запуска, импульсатор И-2 и две пусковые форсунки пусковых воспламенителей;

3) дренажная система предназначена для слива несгоревшего топлива из нижней части внутренних полостей двигателя после неудавшегося запуска, слива топлива из коллекторов рабочих форсунок после выключения, капельного слива топлива из уплотнений агрегатов топливной системы и состоит из блока дренажных клапанов и дренажного бачка вертолета.

8.2 ПРИНЦИП РАБОТЫ ТОПЛИВНОЙ СИСТЕМЫ ДВИГАТЕЛЯ ТВ2-117А (АГ)

При работе двигателей топливо из расходного бака вертолета двумя подкачивающими насосами ЭЦН-40 (или ПЦР-1Ш) подается к насосам-регуляторам НР-40ВА двигателей (1). Из насоса высокого давления НР-40ВА топливо поступает в пусковую топливную систему в процессе запуска двигателя, а также в систему регулирования подачи топлива и к рабочим форсункам (13) камеры сгорания. Подачей топлива к пусковым форсункам управляет блок электромагнитных клапанов (5). Давление топлива перед пусковыми форсунками редуцируется клапаном постоянного давления блока электромагнитных клапанов. К рабочим форсункам топливо поступает от насоса-регулятора в количестве, определенном системой регулирования. Рабочим органом, изменяющим подачу топлива к форсункам, является дозирующая игла НР-40ВА. Изменением подачи топлива в камеру сгорания регулируется частота вращения турбокомпрессора и несущего винта (свободной турбины). Поэтому от насоса-регулятора часть дозированного топлива подводится через синхронизатор мощности С0-40 (2) к регулятору оборотов свободной турбины Р0-40М (4). Сервомеханизм иглы настраивается на такую подачу топлива, при которой частота вращения винта остается постоянной. Применение синхронизатора мощности позволяет устанавливать одинаковые режимы параллельно работающих двигателей.

Так же часть дозированного топлива из насоса-регулятора поступает к исполнительному механизму ИМ-40 (3) системы ограничения температуры газа перед турбиной компрессора. При температуре газа выше максимально допустимой исполнительный механизм по сигналам системы, контролирующей температуру, перенастраивает дозирующую иглу НР-40ВА на уменьшение подачи топлива. Подача топлива к рабочим форсункам в процессе запуска двигателя регулируется с помощью пневматического автомата запуска НР-40ВА, к которому подводится атмосферный воздух и воздух из корпуса диффузора камеры сгорания (от компрессора).

1 - насос-регулятор HP-40BA

2 - синхронизатор мощности С0-40

3 - исполнительный механизм ИМ-10

4 - регулятор оборотов РО-40М

5 - блок электромагнитных клапанов

6 - блок дренажных клапанов

7 - корпус камеры сгорания

8 - фильтр

9 - корпус турбины

10 - датчик давления топлива

11 - топливный коллектор первого контрура

12 - топливный коллектор второго контрура

13 - рабочие форсунки

14 - пусковые воспламенители

Тонкий распыл топлива, подводимого от системы высокого давления в камеру сгорания, обеспечивается восемью топливными форсунками (13). "Гак как расход топлива в камеру сгорания изменяется в широки к пределах, то для обеспечения тонкого распыла топливные форсунки выполняются двухканальными. Первый канал (контур) форсунок обеспечивает подачу топлива в камеру сгорания, начиная с момента запуска и на всех режимах. Второй канал включается в работу при выводе двигателя на режимы выше малого газа. Подачей топлива в первый и второй каналы топливных форсунок управляют автоматические устройства насоса-регулятора.

Дренажные клапаны (6) закрываются в момент запуска двигателя под действием давления топлива, поступающего к торцам золотников клапанов, когда его величина достигает 2,5-3 кгс/кв.см. Количество топлива, поступающего в дренажный бачок на работающем двигателе, определяется состоянием уплотнений агрегатов топливной системы, установленных на двигателе.

Газотурбинные двигатели ТВ2-117А (АГ), установленные на вертолете МИ-8, оборудованы электрической системой запуска, в состав которой входят:

Стартер-генераторы ГС-18МО;

Пусковая панель ПСГ-15 (ПСГ-15М);

Система зажигания;

Топливная аппаратура системы запуска.

Запуск двигателей осуществляется от аэродромного источника питания постоянного тока или от бортовых аккумуляторных батарей. После запуска двигателя генератор ГС-18МО автоматически переходит с режима стартера в режим генератора.

Пусковая панель ПСГ-15 (ПСГ-15М) предназначена для автоматического управления запуском двигателей. Панель обеспечивает запуск двигателей на земле и в полете, холодную прокрутку и прекращение процесса запуска.

Панель установлена на стенке шпангоута № 5Н за сиденьем левого пилота.


На основании панели размещены: программный механизм ПМЖ-2-60 (у ПСГ-15)или 2ПМ8060А(у ПСГ-15М) (моторное реле с электродвигателем Д-2РТ, редуктор, блок кулачков, блок рычагов и переключателей); регулятор тока РУТ-600Д-2 (или РУТ-600ТВ) (электромагнитный регулятор реостатного типа); сопротивления; коммутационная аппаратура; два штепсельных разъема.

Рис.28. Установка пусковой панели ПСГ-15

Система зажигания предназначена для воспламенения топливовоздушной смесь при запуске двигателя на земле и в условиях полета. Система зажигания каждого двигателя включает в себя агрегат зажигания СКНА-22-2Т (СКНА-22-2А) и две полупроводниковые свечи СП18У (СП-18УА).

Агрегат зажигания представляет собой низковольтную конденсаторную систему являющуюся источником электрической энергии, необходимой для образования электрического разряда между электродами запальной свечи. Установлен в отсеке двигателя.

Запальная свеча представляет собой полупроводниковую, экранированную свечу (угольник с керамической изоляцией и фланцевым креплением). Рабочий зазор свечи равен (1,4±0,4) мм, пробивное напряжение - не более 2000В.

Свечи монтируются в пусковых воспламенителях двигателя, установленных на корпусе диффузора камеры сгорания двигателя.

Параметры работы стартер-генератораГС-18МО

Номинальное напряжение................................................................................. 24В

Количество временных циклов.............................................................................. 3

Продолжительность циклов (программ):

-запуск двигателя на земле........................................................................ (42 ±2)с

-запуск двигателя в полете....................................................................... (42 ±2с

-холодная прокрутка............................................................................... (30 ± 1,5)с



Режим работы......................................................... повторно-кратковременный

Число включений..................................................................................................... б

Продолжительность включений........................................................ не более 44с

Перерыв между включениями............................................. 3 мин (после шестого

включения - полное охлаждение)

Панели ПСГ-15 и ПСГ-15М по схеме внешних соединений и посадочным местам взаимозаменяемы.

Рис.29. Внешний вид двигателя ТВ2-117А

В топливную аппаратуру системы запуска входит блок электромагнитных клапанов, предназначенный для открытия и закрытия канала подвода пускового топлива к пусковым форсункам и для включения продувки пусковых топливных магистралей после прекращения подачи к ним топлива. Работа блока электромагнитных клапанов происходит по сигналам пусковой панели ПСГ-15 (ПСГ-15М). Блоки клапанов установлены на корпусах компрессоров двигателей.

Импульсатор питания И-2 предназначен для увеличения высотности запуска двигателей и улучшения наземного запуска в зимних условиях. Импульсатор выдает электрические сигналы частотой 60 импульсов в минуту, которые управляют включением клапана пускового топлива двигателей. В цепь питания электросхемы импульсатора введен выключатель ВГ-15К «ИМПУЛЬСАТОР ВКЛ-ВЫКЛ», установленный на щитке предохранителей, справа у шпангоута № 4Н. Рядом установлена лампа СЛЦ-51 с зеленым светофильтром, мигающая при работе импульсатора. Выключатель импульсатора законтрен нитками во включенном положении и опломбирован.



Пусковая система двигателей с установленным импульсатором питания И-2 отлажена под импульсную подачу топлива. Допускается эксплуатация этих двигателей без импульсатора. В этом случае при запуске «горячего» двигателя запуск может быть нестабильным. Для обеспечения надежности запуска необходимо предварительно произвести холодную прокрутку двигателя. Импульсатор И-2 установлен в кабине пилотов, на стенке правого аккумуляторного отсека.



ПРИМЕЧАНИЕ: В серийном производстве импульсатор устанавливается на вертолетах выпуска с июля 1972г.График работы микровыключателей программного механизма ПСГ-15 (ПСГ-15М)

Рис.30. График работы ПСГ-15

Процесс запуска двигателя происходит в следующей последовательности:

1.При нажатии на кнопку "Запуск" (1-я секунда) питание через автомат защиты сети "Зажигание" и контакты кнопки "Запуск" подается на поляризованное реле включения программного механизма и загорается табло «Автомат, включен» на щитке запуска. В цепи питания реле установлена кнопка, которая исключает возможность запуска двигателя при включенном тормозе несущего винта.

Программный механизм пусковой панели обеспечивает включение агрегатов и элементов системы запуска: стартера-генератор ГС-18МО, агрегат зажигания СКНА-22-2А, генератор импульсов в И-2 и электромагнитный клапан пускового топлива. При этом напряжение на зажимах стартера равно 2...3В, а пусковой ток 200...250А. Начинается медленная раскрутка двигателя (выборка люфтов в передачах).

Через 2с с момента нажатия кнопки "Запуск" кулачок программного механизма блокирует кнопку от повторного случайного нажатия.

2. На 3-й секунде на якорь стартера подается питание 24В (при параллельном соединении групп аккумуляторных батарей). В результате ток, потребляемый стартером, увеличивается до 1100-1200А и начинается энергичная раскрутка двигателя.

3. При достижении давления топлива после насоса высокого давления НР-40ВА
Рт-3...4 кгс/см 2 открывается клапан постоянного давления. Топливо поступает в пусковые
воспламенители и поджигается.

При достижении Nтк=17...21 % открывается запорный клапан насоса-регулятора
и в камеру сгорания поступает рабочее топливо. Воспламенение рабочего топлива
сопровождается появлением и резким ростом температуры газов, частота вращения
турбокомпрессора начинает возрастать интенсивнее.

Рис.31. Электрощиток запуска двигателей

4. На 9-й секунде кулачок программного механизма подает питание на контакторы,
которые переключают группы аккумуляторных батарей на последовательную работу. Это
приводит к увеличению напряжения на клеммах стартера с 24 на 48В, увеличению силы
тока источников питания до 110А и интенсивному увеличению Nтк.

5. При достижении Nтк=34...36% (но не ранее 12с) по сигналам агрегата КА-40
включается регулятор тока РУТ-600-Д2, отключается подача пускового топлива, зажигание и импульсатор И-2, включается продувка пусковых форсунок и магистралей пусковой топливной системы. В случае, если подача пускового топлива производится импульсами, при включенном импульсаторе, а также, если вышеуказанные переходы на реализуются по достижении Nтк=34...36%, то будут выполнены на 30-й секунде. Также на 30-й секунде программный механизм выключает систему зажигания.

7. На частоте вращения турбокомпрессора Nтк=40...50% возможен
кратковременный заброс температуры газа (до 600° С). Объясняется это тем, что автомат
запуска резко уменьшает перепуск топлива на слив, а регулятор оборотов турбокомпрессора еще не вступил в работу. Точка заброса температуры газа может быть перемещена по линии Nтк в зависимости от регулировки автомата запуска.

8. При достижении Nтк=50...56% гидравлическая система двигателя закрывает
клапаны перепуска воздуха из компрессора в атмосферу.

9. При Nтк=57...63% агрегат КА-40 выдает команду на отключение пусковой панели
и переключение стартера в генераторный режим. Если это не произойдет (из-за неисправности), то на 40-й секунде кулачок программного механизма включает ускоренную доработку цикла и отключает все элементы запуска. Программный механизм устанавливается в исходное положение (табло «Автоматика включена» гаснет), а обмотки возбуждения стартера подключаются к регулятору напряжения, и стартер переходит на генераторный режим работы. Для включения генератора в бортовую сеть необходимо включить переключатель на панели постоянного тока.

10. При достижении Nтк близких к 56...58% открывается распределительный
клапан второго контура рабочих форсунок и рабочее топливо поступает во второй контур.

11. Двигатель выходит на режим малого газа.

При холодной прокрутке (переключатель в положении «Прокрутка») процесс включения и выключения агрегатов системы аналогичны, но:

Не происходит переключения источников питания с 24В на 48В;

Не работает система зажигания и не подается топливо в камеру сгорания;

Не включается регулятор тока РУТ-600Д-2.