Устройство системы охлаждения двигателя автомобиля. Как работает система охлаждения двигателя

(ДВС) и их составные части подвергаются сильному нагреву во время эксплуатации различных транспортных средств. При этом, как перегрев, так и переохлаждение мотора способны спровоцировать выход его из строя. В связи с этим одной из важнейших задач разработчиков силовых агрегатов является обеспечение оптимального теплового режима их работы. Грамотно организованная система охлаждения двигателя способствует получению наилучших эксплуатационных параметров ДВС, к которым относятся:

  1. Максимальная мощность.
  2. Минимальный расход горючего.
  3. Увеличенный срок эксплуатации.

Влияние температурных параметров на работу мотора

За один рабочий цикл температура в цилиндрах ДВС изменяется от 80…120 градусов Цельсия во время впуска горючей смеси до 2000…2200 градусов Цельсия в процессе ее сгорания. При этом силовой агрегат достаточно сильно нагревается.

Если мотор во время работы охлаждается недостаточно интенсивно, то его детали сильно нагреваются и изменяются в размерах. Значительно уменьшается (из-за выгорания) и объем моторного масла, залитого в картер. В итоге увеличивается трение между взаимодействующими деталями, что приводит к их быстрому износу или даже заклиниванию.

Однако и переохлаждение ДВС отрицательно сказывается на его работе. На стенках цилиндров холодного двигателя происходит конденсация паров топлива, которые, смывая слой смазки, разжижают моторное масло, находящееся в картере.

Для исключения негативных последствий, связанных с нарушением теплового режима, системы охлаждения проектируются так, чтобы исключить перегрев и переохлаждение мотора в процессе эксплуатации.

В результате химические свойства последнего ухудшаются, что способствует:

  • увеличенному расходу моторного масла;
  • интенсивному износу трущихся поверхностей;
  • падению мощности силового агрегата;
  • увеличению расхода горючего.

Классификация

При работе мотора необходимо обеспечить отвод от 25 до 35% выделяемого тепла. Для его эффективного поглощения (отвода) чаще всего используют воду, воздух или специальную жидкость (тосол, антифриз). Материал теплоносителя определяет способ охлаждения силового агрегата.

Различают системы:

  1. Принудительного воздушного охлаждения.
  2. Жидкостного охлаждения с замкнутым циклом.

Жидкостная система охлаждения

В настоящее время для эффективного охлаждения автомобильных двигателей используют закрытую систему жидкостного охлаждения с замкнутым циклом.

Конструкция

В обязательном порядке система содержит расширительный бачок, который служит для компенсации изменения объема жидкости при изменении ее температуры. Кроме того, через него заливают теплоноситель.

Также в состав системы входят:

  • водяная рубашка силового агрегата (пространство между двойными стенками блока цилиндров и его головки в местах отвода чрезмерного количества тепла);
  • датчик температуры;
  • биметаллический или электронный термостат, обеспечивающий оптимальную температуру в системе;
  • помпа-насос центробежного типа, обеспечивающий принудительную циркуляцию охлаждающей жидкости в системе;
  • вентилятор, с помощью которого усиливается поток встречного воздуха на основной радиатор системы;
  • радиатор, осуществляющий передачу тепла окружающей среде;
  • радиатор отопителя, предназначенный для передачи тепла непосредственно в салон автомобиля;
  • контрольный прибор, встроенный в панель приборов автомобиля.

Принцип действия

Охлаждающая жидкость заливается в систему через расширительный бачок. Постоянно циркулируя внутри системы, она отводит тепло от составных частей мотора, нагревающихся в процессе работы, нагревается, попадает в радиатор, охлаждается в радиаторе встречным потоком воздуха и возвращается обратно.

При необходимости включается вентилятор, усиливая эффективность охлаждения. Для замкнутых систем охлаждения температура теплоносителя не должна превышать 126 градусов Цельсия. Таким образом, обеспечивается оптимальный тепловой режим работы силового агрегата.

Дополнительные функции

Кроме своей главной задачи – отвода тепла от нагревающихся элементов, жидкостная система охлаждения двигателя обеспечивает также:

  • Прогрев силового агрегата в холодное время года

В современных системах жидкостного охлаждения предусмотрено два контура, по которым может циркулировать охлаждающая жидкость. Это сделано для того, чтобы в момент пуска холодного двигателя, когда его детали и сама жидкость имеют низкую температуру, циркуляция теплоносителя осуществлялась по малому кругу (мимо радиатора).

Обеспечивается это термостатом, который в момент, когда температура поднимется до определенного уровня (70-80 градусов Цельсия), открывается, давая возможность теплоносителю циркулировать по большому кругу (через радиатор). Таким образом, осуществляется ускоренный процесс прогрева двигателя.

  • Нагревание воздуха в салоне автомобиля

В холодное время года с помощью горячего теплоносителя происходит нагревание воздуха в салоне автомобиля. Для этого служит дополнительный радиатор, установленный в салоне и оснащенный собственным вентилятором. С их помощью тепло, отобранное от горячей жидкости, распространяется по всему объему салона.

  • Снижение температуры нагнетаемого в цилиндры воздуха

Специально для двигателей, оснащенных турбонагнетателями, предусмотрены двухконтурные системы, в которых один контур обеспечивает охлаждение жидкости, а второй – охлаждение воздуха.

Кроме того, контур охлаждения теплоносителя также представляет собой двухконтурную систему, один контур которой охлаждает головку блока цилиндров, а другой – сам блок.

Это вызвано тем, что в турбированном моторе температура головки блока цилиндров должна быть ниже температуры самого блока на 15…20 градусов Цельсия. Особенностью такой системы охлаждения является то, что каждый контур контролируется собственным термостатом.

Достоинства и недостатки

Жидкостная система охлаждения двигателя присутствует практически у всех современных автомобилей. Принципиально отличаясь от систем воздушного охлаждения, она гарантирует:

  • равномерное и быстрое прогревание силового агрегата;
  • эффективный отвод тепла в любых условиях эксплуатации двигателя;
  • снижение затрат мощности;
  • стабильный тепловой режим работы мотора;
  • возможность использования выделяемого тепла для нагревания воздуха в салоне и пр.

Среди немногочисленных недостатков жидкостной системы охлаждения можно отметить:

  • необходимость регулярного обслуживания и сложность ремонта;
  • повышенную чувствительность к изменениям температуры.

Неисправности и способы их устранения

Всем системам жидкостного охлаждения свойственны характерные неисправности. Чаще всего встречаются:

  1. заклинивание термостата в закрытом положении (циркуляция жидкости осуществляется по малому кругу);
  2. поломка помпы;
  3. повреждение выпускного клапана, встроенного в пробку расширительного бачка;
  4. утечка теплоносителя вследствие разгерметизации системы (повреждение уплотнителей, коррозия и пр.).
  5. Кроме того, достаточно часто термостат заклинивает в положении «Открыто» (теплоноситель циркулирует по большому кругу), что увеличивает время прогрева холодного мотора и способствует нестабильности теплового режима при его дальнейшей работе.

Все эти неисправности характеризуются значительным повышением рабочей температуры силового агрегата, что может привести к закипанию теплоносителя и перегреву мотора.

Устраняются все дефекты путем замены неисправных и/или поврежденных деталей или комплектующих.

Воздушная система охлаждения

Моторами воздушного охлаждения оснащались транспортные средства в 50-70 годах прошлого века. Типичными представителями таких автомобилей являются «Запорожец» или FIAT 500. Сейчас моторы с воздушным охлаждением в автомобилестроении практически не встречаются.

Конструкция и принцип действия

Конструктивно система принудительного воздушного охлаждения монтируется в подкапотном пространстве транспортного средства и состоит из:

  • отсасывающего или нагнетающего вентилятора;
  • направляющих ребер рубашки охлаждения двигателя;
  • органов управления (дроссельные заслонки, управляющие подачей воздуха или муфта, регулирующая частоту вращения вентилятора в автоматическом режиме);
  • температурного датчика, установленного в силовом агрегате;
  • контрольного прибора, выведенного на приборную панель в салоне автомобиля.

Охлаждение мотора осуществляется встречным холодным воздухом. Для усиления его потока чаще всего используют вентилятор нагнетающего типа. Он усиливает поток холодного плотного воздуха и обеспечивает его подачу в больших количествах при малых энергетических затратах.

Отсасывающий вентилятор требует больших затрат мощности, однако обеспечивает более равномерный отвод тепла от деталей силового агрегата.

Достоинства и недостатки

Моторы с принудительным воздушным охлаждением отличаются:

  • простотой конструкции;
  • низкими требованиями к изменению температуры окружающей среды;
  • небольшим весом;
  • несложным техническим обслуживанием.

К недостаткам системы воздушного охлаждения относят:

  • большую потерю мощности мотора, которая расходуется на обеспечение работы вентилятора;
  • высокий уровень шума во время работы вентилятора;
  • недостаточное охлаждение отдельных элементов двигателя из-за неравномерного обдува;
  • невозможность использования излишков тепла для обогрева салона.

Системой охлаждения называется совокупность устройств, осуществляющих принудительный регулируемый отвод и передачу теплоты от деталей двигателя в окружающую среду.

Система охлаждения предназначена для поддержания оптимального температурного режима, обеспечивающего получение максимальной мощности, высокой экономичности и длительного срока службы двигателя.

При сгорании рабочей смеси температура в цилиндрах двигателя повышается до 2500 °С и в среднем при работе двигателя составляет 800...900°С. Поэтому детали двигателя сильно нагреваются, и если их не охлаждать, то будут снижаться мощность двигателя, его экономичность, увеличиваться изнашивание деталей и может произойти поломка двигателя.

При чрезмерном охлаждении двигатель также теряет мощность, ухудшается его экономичность и возрастает изнашивание.

Для принудительного и регулируемого отвода теплоты в двигателях автомобилей применяют два типа системы охлаждения (). Тип системы охлаждения определяется теплоносителем (рабочим веществом), используемым для охлаждения двигателя.

Рисунок 1 – Типы систем охлаждения

Применение в двигателях различных систем охлаждения зависит от типа и назначения двигателя, его мощности и класса автомобиля.

Жидкостная система охлаждения

В жидкостной системе охлаждения используются специальные охлаждающие жидкости -- антифризы различных марок, имеющие температуру загустевания - 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.

Так, при охлаждении антифризом температура стенок цилиндров на 15...20°С выше, чем при охлаждении водой. Это ускоряет прогрев двигателя и уменьшает изнашивание цилиндров, но в летнее время может привести к перегреву двигателя.

Оптимальным температурным режимом двигателя при жидкостной системе охлаждения считается такой, при котором температура охлаждающей жидкости в двигателе составляет 80 ...100 °С на всех режимах работы двигателя.

Это возможно при условии, что с охлаждающей жидкостью уносится в окружающую среду 25...35 % теплоты, выделяющейся при сгорании топлива в цилиндрах двигателя. При этом в бензиновых двигателях величина отводимой теплоты больше, чем в дизелях.

Система охлаждения двигателя состоит из рубашки охлаждения головки и блока цилиндров, радиатора, насоса, термостата, вентилятора, расширительного бачка, соединительных трубопроводов и сливных краников. Кроме того, в систему охлаждения входит отопитель салона кузова автомобиля.

Работа системы

Рисунок 3 - Система охлаждения двигателя

1, 2, 3, 5, 15, 18 - шланги; 4 - патрубок; 6 - бачок; 7, 9 - пробки; 8 - рубашка охлаждения; 10 - радиатор; 11 - кожух; 12 - вентилятор; 13, 14 - шкивы; 16 - ремень; 17- насос; 19 – термостат

При непрогретом двигателе основной клапан термостата 19 () закрыт, и охлаждающая жидкость не проходит через радиатор 10. В этом случае жидкость нагнетается насосом 17 в рубашку охлаждения 8 блока и головки цилиндров двигателя. Из головки блока цилиндров через шланг 3 жидкость поступает к дополнительному клапану термостата и попадает вновь в насос. Вследствие циркуляции этой части жидкости двигатель быстро прогревается. Одновременно меньшая часть жидкости поступает из головки блока цилиндров в обогреватель (рубашку) впускного трубопровода двигателя, а при открытом кране - в отопитель салона кузова автомобиля.

При прогретом двигателе дополнительный клапан термостата закрыт, а основной клапан открыт. В этом случае большая часть жидкости из головки блока цилиндров попадает в радиатор, охлаждается в нем и через открытый основной клапан термостата поступает в насос. Меньшая часть жидкости, как и при непрогретом двигателе, циркулирует через обогреватель впускного трубопровода двигателя и отопитель салона кузова. В некотором интервале температур основной и дополнительный клапаны термостата открыты одновременно, и охлаждающая жидкость циркулирует в этом случае по двум направлениям (кругам циркуляции ).

Количество циркулирующей жидкости в каждом круге зависит от степени открытия клапанов термостата, чем обеспечивается автоматическое поддержание оптимального температурного режима двигателя. Расширительный бачок 6, заполненный охлаждающей жидкостью, сообщается с атмосферой через резиновый клапан, установленный в пробке 7 бачка. Бачок соединен шлангом с наливной горловиной радиатора, которая имеет пробку 9 с клапанами. Бачок компенсирует изменения объема охлаждающей жидкости, и в системе поддерживается постоянный объем циркулирующей жидкости.

Для слива охлаждающей жидкости из системы охлаждения имеются два сливных отверстия с резьбовыми пробками, одно из которых находится в нижнем бачке радиатора, а другое в блоке цилиндров двигателя. Температура жидкости в системе контролируется указателем, датчик которого установлен в головке блока цилиндров двигателя.

Жидкостный насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. На двигателях автомобилей применяют лопастные насосы центробежного типа ().

Рисунок 4 – Жидкостный насос (а) и вентилятор (б) двигателя

1 - крыльчатка; 2 - корпус; 3 - окно; 4 - крышка; 5 - подшипник; 6 - вал; 7 - ступица; 8 - винт; 9 - уплотнительное устройство; 10 - патрубок; 11, 13,14 - шкивы; 12 - ремень; 15 - вентилятор; 16 - накладка; 17 – болт

Вал 6 насоса установлен в отлитой из алюминиевого сплава крышке 4 в двухрядном неразборном подшипнике 5. Подшипник размещен и зафиксирован в крышке стопорным винтом 8. На одном конце вала напрессована литая чугунная крыльчатка 1, а на другом конце - ступица 7 и шкив 11 вентилятора 15. При вращении вала насоса охлаждающая жидкость через патрубок 10 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя. Уплотнительное устройство 9, состоящее из самоподжимной манжеты и графитокомпозитного кольца, установленное на валу насоса, исключает попадание жидкости в подшипник вала.

Привод насоса и вентилятора осуществляется клиновым ремнем 12 от шкива 13, который установлен на переднем конце коленчатого вала двигателя. С помощью этого ремня также вращается шкив 14 генератора. Нормальную работу насоса и вентилятора обеспечивает правильное натяжение ремня.

Натяжение ремня регулируют путем перемещения генератора в сторону от двигателя (показано на (а) стрелкой). Насос корпусом 2, отлитым из алюминиевого сплава, крепится к фланцу блока цилиндров в передней части двигателя.

Жидкостный насос с приводом от зубчатого ремня

Рассмотрим устройство насоса, привод которого осуществляется зубчатым ремнем ().

Рисунок 5 – Жидкостный насос двигателя

1 - шкив; 2 - винт; 3 - подшипник; 4 - вал; 5 - корпус; 6 - уплотнительное устройство; 7 - отверстие; 8 - крыльчатка

Вал 4 насоса установлен в корпусе 5 из алюминиевого сплава в неразборном двухрядном шариковом подшипнике 3. Подшипник стопорится в корпусе винтом 2 и уплотняется специальным устройством 6, включающим в себя графитокомпозитное кольцо и манжету. На переднем конце вала напрессован зубчатый шкив 1 из спеченного материала, а на заднем конце - крыльчатка 8. В крыльчатке сделаны два сквозных отверстия 7, которые соединяют между собой полости с охлаждающей жидкостью, расположенные по обе стороны крыльчатки. Благодаря этим отверстиям выравнивается давление охлаждающей жидкости на крыльчатку с обеих сторон, что исключает осевые нагрузки на вал насоса при его работе.

Вал насоса приводится во вращение через шкив 1 зубчатым ремнем привода распределительного вала от коленчатого вала . При вращении вала жидкость поступает к центру крыльчатки и под действием центробежной силы направляется в рубашку охлаждения двигателя. Насос крепится корпусом к блоку цилиндров двигателя через уплотнительную прокладку.

Способствует ускорению прогрева двигателя и регулирует в определенных пределах количество охлаждающей жидкости, проходящей через радиатор. Термостат представляет собой автоматический клапан. В двигателях автомобилей применяют неразборные двухклапанные термостаты с твердым наполнителем.

Рисунок 6

1, 6, 11 – патрубки; 2, 8 – клапаны; 3, 7 – пружины; 4 – баллон; 5 – диафрагма; 9 – шток; 10 – наполнитель

) имеет два входных патрубка 1 и 11, выходной патрубок 6, два клапана (основной 8, дополнительный 2) и чувствительный элемент. Термостат установлен перед входом в насос охлаждающей жидкости и соединяется с ним через патрубок 6. Через патрубок 1 термостат соединяется с головкой блока цилиндров двигателя, а через патрубок 11 - с нижним бачком радиатора.

Чувствительный элемент термостата состоит из баллона 4, резиновой диафрагмы 5 и штока 9. Внутри баллона между его стенкой и резиновой диафрагмой находится твердый наполнитель 10 (мелкокристаллический воск), обладающий высоким коэффициентом объемного расширения.

Основной клапан 8 термостата с пружиной 7 начинает открываться при температуре охлаждающей жидкости более 80 °С. При температуре менее 80 °С основной клапан закрывает выход жидкости из радиатора, и она поступает из двигателя в насос, проходя через открытый дополнительный клапан 2 термостата с пружиной 3.

При возрастании температуры охлаждающей жидкости более 80 °С в чувствительном элементе плавится твердый наполнитель, и объем его увеличивается. Вследствие этого шток 9 выходит из баллона 4, и баллон перемещается вверх. Дополнительный клапан 2 при этом начинает закрываться и при температуре более 94 °С перекрывает проход охлаждающей жидкости от двигателя к насосу. Основной клапан 8 в этом случае открывается полностью, и охлаждающая жидкость циркулирует через радиатор.

Расширительный бачок

Расширительный бачок служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери.

На автомобилях применяют полупрозрачные пластмассовые бачки с заливной горловиной, закрываемой пластмассовой пробкой. Через горловину система заполняется охлаждающей жидкостью, а через клапаны, размещенные в пробке, осуществляется связь внутренней полости бачка и системы охлаждения с атмосферой. В пробке расширительных бачков часто имеется один резиновый клапан, срабатывающий при давлении, близком к атмосферному. При сливе охлаждающей жидкости из системы пробку снимают с расширительного бачка. Расширительный бачок размещается в подкапотном пространстве отделения двигателя, где крепится к кузову автомобиля.

Радиаторы автомобилей

Радиатор обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. На легковых автомобилях применяются трубчато-пластинчатые радиаторы.

Рисунок 7 – Неразборный радиатор (а) и кожух (б) вентилятора двигателя

1 – пробка; 2 – горловина; 3, 4 – бачки; 5 – сердцевина; 6 – патрубок; 7, 8 – клапаны; 9 – кожух; 10 – уплотнитель

На некоторых двигателях () применяется электровентилятор. Он состоит из электродвигателя 6 и вентилятора 5. Вентилятор - четырехлопастный, крепится на валу электродвигателя. Лопасти на ступице вентилятора расположены неравномерно и под углом к плоскости его вращения. Это увеличивает подачу вентилятора и уменьшает шумность его работы. Для более эффективной работы электровентилятор размещен в кожухе 7, который прикреплен к радиатору. Электровентилятор крепится к кожуху на трех резиновых втулках. Включается и выключается электровентилятор автоматически датчиком 3 в зависимости от температуры охлаждающей жидкости.

Во время движения многие механизмы мотора находятся в постоянном движении. Их трение настолько сильно, что температура начинает очень быстро повышаться. Но самый главный «виновник» высокой температуры горючая смесь, в результате сгорания которой температура повышается до 2000-2500 °С. При этом двигатель может быстро выйти из строя, т.к. для его нормальной работы самая оптимальная температура 80-90 °С . Для того чтобы сохранить работоспособность двигателя его нужно охлаждать. Для этого в моторе и существует система охлаждения.

Самым простым способом охлаждения двигателя, является встречный поток воздуха. Для автомобилей такая система практически не используется, но зато она широко применяется для охлаждения двигателей мотоциклов. Иногда встречный воздух охлаждает и двигатель машин. Среди известных нам марок эта система использовалась на .

Принцип действия воздушной системы охлаждения основан на том, что воздух подается на двигатель с помощью вентилятора. А охлаждением автоматически управляет термостат, с помощью которого можно поддерживать нужный температурный режим, не допуская ни охлаждения, ни перегрева. Для большинства автомобильных двигателей используется жидкостная система охлаждения. Принцип действия этой системы намного проще, чем охлаждение воздухом. Основан он на том, что тепло, исходящее от цилиндров, поглощается охлаждающей средой. В качестве регулятора температуры, т.е. охлаждающей среды, используется специальная жидкость. Нагреваясь от стенок цилиндра, она поступает в радиатор, охлаждается там и снова проходит к стенкам цилиндра, поглощая тепло. Таким образом, охлаждающая жидкость постоянно циркулирует, в действие эту систему приводит насос. Для охлаждения используется антифриз - смесь этиленгликоля и спирта. В качестве охлаждающей среды можно использовать и обычную воду, но в холода ее применение недопустимо, поскольку, замерзнув, она выведет из строя двигатель. Антифриз же не замерзает до минус 40 °С .

А теперь речь пойдет о том, как устроена система охлаждения. В это устройство входит рубашка охлаждения цилиндров, радиатор, насос, термостат, вентилятор и вентиляторный ремень, жалюзи, соединительные патрубки и шланги с хомутиками, а также указатель температуры воды. Все перечисленные детали очень важны и при поломке одного из них, может выйти из строя вся система охлаждения.

Если двигатель - это сердце машины, то водяной насос можно назвать сердцем системы охлаждения. Основная его функция - обеспечить циркуляцию жидкости. Вентилятор создает поток воздуха, который охлаждает жидкость. Чем больше скорость машины, тем сильнее работает вентилятор.

Что такое рубашка охлаждения вы уже знаете: образуют ее двойные стенки цилиндров, а в пространство между ними поступает охлаждающая жидкость. Радиатор состоит из верхнего и нижнего бачка, между которыми расположены трубки. В верхнем бачке находится горячая жидкость, которую и нужно охладить. Сразу большое количество воды остывает очень медленно. Но когда машина в пути ждать вам некогда, поэтому конструкторы изобрели такое устройство, чтобы вода в нем охлаждалась небольшими порциями.


Например, если чай в чашке очень горячий, то можно набрать его в чайную ложку и подуть. Работа радиатора основана на этом же принципе. Из верхнего бачка горячая жидкость тонкими струйками, которые хорошо обдуваются, поступает в нижний бачок. Там жидкость собирается уже охлажденная.

Горловина радиатора прочно закрыта пробкой. Но жидкость бывает такой горячей, что может даже закипеть. Для этих случаев предусмотрены клапаны, которые имеются на пробке. При возникновении избыточного давления через один клапан (выпускной) стравливается пар. Через другой клапан (впускной) в радиатор попадает воздух, когда давление в механизме ниже атмосферного. Если двигатель еще не остыл после долгой работы, то открывать пробку радиатора очень опасно, т.к. можно получить ожог горячим паром или водой.

Термостат регулирует работу системы охлаждения. Когда жидкость нагреется, то спирт, находящийся в гофрированном баллоне термостата, начнет испаряться, давление внутри баллона со спиртом повысится, и баллон, растягиваясь в высоту, откроет клапан термостата. Происходит это при температуре не ниже 80 °С. Как только температура поднимется до 90 °С, клапан откроется полностью и вода сможет циркулировать в системе свободно. Закроется клапан только тогда, когда температура понизится, это происходит, когда автомобилист снижает скорость машины или останавливается.

На дороге, даже если она очень хорошая и гладкая, машину все равно будет немного потряхивать. Поэтому положение двигателя по отношению к радиатору постоянно меняется, и на твердую опору ставить его нельзя. Допускается только резиновая опора. По той же причине не делают и жесткое соединение между двигателем и радиатором. А вот прорезиненные шланги и патрубки в самый раз. Они легкие и гибкие, поэтому овраги и кочки им не страшны.

Жалюзи необходимы для регулирования количества воздуха, который проходит через радиатор. Состоят они из ряда вертикально установленных пластинок, которые можно поворачивать с помощью рукоятки, находящейся в салоне автомобиля. Когда рукоятка находится в исходном положении, створки жалюзи открыты и воздух, не задерживаясь, свободно проходит к радиатору. Если выдвинуть рукоятку на себя, то створки жалюзи сомкнутся, и доступ воздуха к радиатору прекратится. Выдвинув рукоятку лишь наполовину, воздух хоть и не сильно, но будет поступать к радиатору. Жалюзи используются водителями нечасто и преимущественно в холодное время года, чтобы защитить радиатор от переохлаждения. При пуске двигателя в зимнее время жалюзи нужно закрыть, чтобы он быстрее прогрелся и не позволил замерзнуть воде в радиаторе.

Безусловно, работу системы охлаждения необходимо контролировать. Для этого на приборной панели имеется электрический указатель температуры воды. Он связан проводом с датчиком, помещенным в рубашку охлаждения. В дороге водителю нужно следить за показаниями этого прибора. Перегреваться двигатель не должен, т.к. это приводит к быстрому износу механизма. Чаще всего перегрев происходит из-за недостаточного количества охлаждающей жидкости или в результате нарушения в работе охлаждающей системы. Переохлаждение чаще всего возникает в зимнее время из-за неисправных жалюзи или отсутствия утеплительного чехла.

Перегрев и охлаждение значительно снижают мощность двигателя, поэтому необходимо регулярно проверять уровень охлаждающей жидкости в радиаторе, смотреть, не подтекает ли она.

Система охлаждения нуждается в регулярном осмотре , во время которого необходимо смазывать подшипники вентилятора и подтягивать его ремень и хомутики шлангов, если в этом есть необходимость. В том случае, если для охлаждения вы используете воду, то в холодную погоду, особенно при температуре ниже О °С, необходимо следить, чтобы вода в радиаторе не замерзла, иначе сам радиатор и цилиндр будут испорчены. Для защиты двигателя от мороза на облицовку радиатора надевают утеплительный чехол. 

Если вы хотите наглядно ознакомиться с системой охлаждения двигателя, то обязательно посмотрите это видео.


Еще статьи про ""

Заметили опечатку на сайте? Выделите ее и нажмите Ctrl + Enter

Современный автолюбитель, все больше интересуется устройством автомобиля. В изучении автомобильного устройства, сложно обойти стороной такую важную часть, как поддержание температурного режима в движке авто. СО (Система охлаждающая движок), важнейшая составляющая любой машины. От правильности ее функционирования, зависим износ и продуктивность движка машины. Исправная СО, существенно снижает нагрузку на рабочие элементы двигателя. Для поддержания корректного функционирования системы, необходимо хорошо понимать ее составляющие. Изучив полезные материалы, вы сможете обслуживать СО со знанием дела.

В ходе эксплуатации автомобиля, рабочие части движка способны набирать высокую температуру. Во избежание перегрева рабочих частей, авто оснащается системой охлаждения. Система охлаждения автомобиля, существенно снижает температуру рабочих частей двигателя. Поддержание оптимального температурного режима, происходит благодаря рабочей жидкости. Рабочая смесь, циркулирует по специальным проводникам, предотвращая перегрев. Система, на всех автомобилях, выполняет ряд дополнительных функций.

Функции охладительной системы.

  • Оптимизация температуры смеси для смазывания рабочих частей авто.
  • Регулирование температуры отработанных газов, в выхлопной системе.
  • Понижение температуры смеси для работы АКПП.
  • Понижение температуры воздуха в турбине автомобиля.
  • Нагревание потока воздуха в системе отопления.

На сегодняшний день, существует несколько видов систем охлаждения. Системы, разделяют в частности от способа понижения температуры рабочих частей.

Виды охлаждающих систем.

  • Закрытая. В данной системе, понижение температуры происходит благодаря рабочей жидкости.
  • Открытая (Воздушная). В открытой системе, понижение температуры осуществляется при помощи воздушного потока.
  • Комбинированная. Рассматриваемая система охлаждения, совместила в себе два вида охлаждения. В частности от производителя системы, охлаждение производится совместно или последовательно.

Наиболее популярной в машиностроении, стала система охлаждения двигателя использующая ОЖ. Рассматриваемая система охлаждения, стала наиболее действенной и практичной к эксплуатации. Система охлаждения, равномерно осуществляет понижение температуры рабочих частей двигателя. Рассмотрим устройство и способ функционирования системы, используя наиболее популярный пример.

Вне зависимости от особенностей двигателя, конструкция и функционирование охладительной системы, отличаются не сильно. Таким образом, двигатели с различным видом топлива, обладают практически идентичной системой поддержания температурного режима. Система охлаждения, включает в себя составные части, обеспечивающие ее функционирование. Каждая составляющая, является крайне важна для полноценной работы. При нарушении работы одной составляющей, нарушается корректная оптимизация температурного режима.

Составные элементы систем охлаждения.

  • Теплообменник ОЖ.
  • Масляный теплообменник.
  • Вентилятор.
  • Насосы. В частности от модели ОС, их может быть несколько.
  • Бак для рабочей смеси.
  • Датчики.

Для функционирования рабочей смеси, в системе существуют специальные проводники. Контроль работы системы, осуществляется благодаря центральной системы управления.

Теплообменник, осуществляет понижение температуры жидкости, потоком холодного воздуха. Для изменения тепловой отдачи, теплообменник оснащается определенным механизмом, представляющим небольшую трубку.

Вместе с штатным передатчиком, некоторые производители, оснащают систему теплообменником масла и переработанных газов. Теплообменник масла, осуществляет понижение температуры жидкости, смазывающей рабочие составляющие. Второй, необходим для понижения температуры выхлопной смеси. Регулятор циркуляции выхлопа — снижает температуру выработки совокупности топлива и воздуха. Тем самым, снижается количество получаемого азота, в процессе функционирования двигателя. За правильную работу рассматриваемого устройства, отвечает специальный компрессор. Компрессор, приводит в движение рабочую смесь, перемещая ее по системе. Устройство, является встроенным в ОС.

Теплообменник, отвечает за противоположное действие. Устройство производит увеличение температуры, функционирующего по системе, потока воздуха. Для обеспечения максимальной продуктивности, механизм находиться на выходной части ОЖ из двигателя автомобиля.

Расширительный бочок, предназначен для заполнения системы рабочей смесью. Благодаря данному, в проводники поступает свежая ОЖ, восстанавливающая объем отработанной. Тем самым, уровень смеси, всегда остается необходимым.

Движение ОЖ, происходит благодаря центральному насосу. В зависимости от производителя, насос приводиться в действие различными методами. Большинство насосов, имеют привод в виде ремня или шестеренки. Некоторые производители, оснащают ОС еще одним насосом. Дополнительный насос, необходим при оснащении механизма компрессором, для охлаждения воздушного потока. Блок управления двигателя, отвечает за функционирование всех насосов системы.

Для создания оптимальной температуры жидкости, предусмотрен термостат. Данное устройство выявляет объем жидкости (движущейся через радиатор), который необходимо охладить. Тем самым, создаются необходимый температурный режим, для корректной работы двигателя. Устройство находиться между радиатором и проводника смеси.

Двигатели с большим объемом, оснащаются электрическими термостатами. Данный вид устройств, осуществляют изменение температуры жидкости в несколько этапов. Устройство имеет несколько режимов работы: свободный, замкнутый и промежуточный. Когда, нагрузка на двигатель становиться предельной, благодаря электрическому приводу, термостат приводиться в свободный режим. В данном случае, температура снижается до необходимого уровня. В частности от давления на двигатель, термостат работает в режиме поддержания оптимальной температуры.

Вентилятор, отвечает за улучшение продуктивности регулирования температуры жидкости. В зависимости от модели ОС и производителя, привод вентилятора различается.

Виды привода вентилятора:

  • Механика. Данный вид привода, устанавливает непрерывный контакт с кален — валом движка.
  • Электрика. В таком случае, вентилятор приводиться в действие благодаря электрическому движку.
  • Гидравлика. Специальная муфта с гидравлическим приводом, непосредственно активирует вентилятор.

Благодаря возможности регулировки и множеству режимов работы, наиболее популярным стал — электрический привод.

Важными составляющими совокупности являются датчики. Датчик уровня и температуры охладительной жидкости, позволяют следить за необходимыми параметрами и своевременно их восстанавливать. Так же, в устройстве располагаются центральный блок управления и элементы регулировки.

Датчик температуры ОЖ, определяет показатель рабочей жидкости и переводит его в цифровой формат, для передачи устройству. На выходе радиатора, устанавливается отдельный датчик, для расширения функциональности охладительной системы.

Электрический блок, принимает показатели от датчика и передает его специальным устройствам. Блок, так же изменяет показатели для воздействия, определяя необходимое направление. Для этого, в блоке существует специальная программная установка.

Для осуществления действий и регулировки температуры охлаждающей жидкости, механизм оснащается рядом специальных устройств.

Исполнительные системы ОС.

  • Регулировщик температуры термостата.
  • Переключатель основного и вторичного компрессора.
  • Блок управления режимов вентилятора.
  • Блок, регулирующий работу ОС, после остановки движка.

Принципы функционирования охлаждающей системы.

Контроль за работой охладительной совокупности, осуществляет центральный блок управления двигателя. Большинство автомобилей оборудованы системой, в основе которой лежит определенный алгоритм. Необходимые условия работы и период определенных процессов, определяются с использованием соответствующих показателей. Оптимизация происходит, исходя из показателей датчиков (температура и уровень ОЖ, температура смазывающей жидкости). Тем самым, задаются оптимальные процессы для поддержания температурного режима в движке автомобиля.

Центральный насос, отвечает за постоянное движение охлаждающей жидкости по проводникам. Под давление, жидкость непрерывно движется по проводникам ОС. Благодаря данному процессу, происходит понижение температуры рабочих частей двигателя. В зависимости от особенностей определенного механизма, различают несколько направлений движения смеси. В первом случае, смесь направляется из начального цилиндра в конечный. Во втором, от коллектора выхода до входного.

Исход из показателей температуры, жидкость поступает по узкой или широкой дуге. При запуске двигателя, рабочие элементы и жидкость, в том числе, обладают низкой температурой. Для быстрого повышения температуры, смесь движется по узкой дуге, не охлаждая радиатор. Во время этого процесса, термостат находиться в замкнутом режиме. Тем самым, достигается оперативный прогрев двигателя.

По ходу повышения температуры элементов двигателя, термостат переходит в свободный режим (открывая крышку). При этом, жидкость начинает проходить через радиатор, двигаясь по широкой дуге. Поток воздуха в радиаторе, охлаждает нагретую жидкость. Вспомогательным элементом для охлаждения, так же, может являться вентилятор.

После создания необходимой температуры, смесь переходит в проводники, расположенные на двигателе. Во время работы автомобиля, процесс оптимизации температуры постоянно повторяется.

На автомобилях — оснащенных турбиной, устанавливается специальный механизм охлаждения с двумя уровнями. В данном, происходит разделение проводников ОЖ. Один из уровней — отвечает за охлаждения двигателя автомобиля. Второй — охлаждает воздушный поток.

Охладительное устройство, является особо важным для правильной работы автомобиля. При возникновении неполадок в нем, двигатель может перегреться и выйти из строя. Как и любая составляющая автомобиля, ОС, требует своевременного обслуживания и ухода. Одним из важнейший элементов для поддержания температурного режима, является охлаждающая жидкость. Данную смесь, необходимо регулярно менять, согласно рекомендациям производителя. При возникновении неисправностей в ОС, не рекомендуется эксплуатировать автомобиль. Это может подвернуть двигатель, влиянию высоких температур. Во избежание серьезных неисправностей, необходимо оперативно диагностировать устройство. Изучив устройство и принцип функционирования, вы сможете определить характер неисправности. При возникновении серьезных неисправностей, обратитесь к профессионалам. Данные знания, так же пригодятся вам в этом. Обслуживайте устройство своевременно и вы существенно увеличите срок ее эксплуатации. Удачи в изучении полезного материала.

При сгорании топлива внутри цилиндра температура газов поднимается до 2000°С. Тепло расходуется на механическую работу, частично уносится с выхлопными газами, тратится на лучеиспускание и нагрев деталей двигателя. Если его не охлаждать, то он теряет мощность (ухудшается наполнение цилиндров рабочей смесью, возникает преждевременное самовоспламенение смеси и т. д.), усиливается изнашивание деталей (выгорает масло в зазорах) и возрастает вероятность поломки их в результате снижения механических свойств материалов.

Если же двигатель переохлажден, уменьшается количество тепла, переходящего в работу, топливо конденсируется на холодных стенках цилиндров, стекает в картер (масляный резервуар) и разжижает смазку, что также приводит к увеличению износа трущихся деталей и снижению мощности двигателя. Таким образом, поддержание определенного теплового режима двигателя является важным и обязательным делом. Поэтому все автомобильные двигатели имеют систему охлаждения.

Существуют жидкостные и воздушные системы охлаждения. Жидкостные системы охлаждения получили большее распространение, так как с их помощью создается более благоприятный тепловой режим для деталей двигателя возможность изготовления деталей двигателя из сравнительно недорогих материалов. Такие двигатели при при работе создают меньше шума за Счет наличия двойных стенок (рубашки) и слоя охлаждающей жидкости.

1 - радиатор отопителя
2 - пароотводящий шланг радиатора отопителя
3 - шланг отводящий
4 - шланг подводящий
5 - датчик температуры охлаждающей жидкости (в головке блока)
6 - шланг подводящей трубы насоса
7 - термостат
8 - заправочный шланг
9 - пробка расширительного бачка
10 - датчик указателя уровня охлаждающей жидкости
11 - расширительный бачок
12 - выпускной патрубок
13 - жидкостная камера пускового устройства карбюратора
14 - отводящий шланг радиатора
15 - подводящий шланг радиатора
16 - пароотводящий шланг радиатора
17 - левый бачок радиатора
18 - датчик включения электровентилятора
19 - электродвигатель вентилятора
20 - крыльчатка электровентилятора

21 - правый бачок радиатора
22 - сливная пробка
23 - кожух электровентилятора
24 - зубчатый ремень привода механизма газораспределения
25 - крыльчатка насоса охлаждающей жидкости
26 - подводящая труба насоса охлаждающей жидкости
27 - подводящий шланг к жидкостной камере пускового устройства карбюратора
28 - отводящий шланг
27 - шланг подвода охлаждающей жидкости к дроссельному патрубку
28 - шланг отвода охлаждающей жидкости от дроссельного патрубка
29 - датчик температуры охлаждающей жидкости в выпускном патрубке
30 - трубки радиатора
31 - сердцевина радиатора

Система охлаждения - жидкостная, закрытого типа, с принудительной циркуляцией. Герметичность системы обеспечивается впускным и выпускным клапанами в пробке расширительного бачка. Выпускной клапан поддерживает повышенное (по сравнению с атмосферным) давление в системе на горячем двигателе (за счет этого температура кипения жидкости становится выше, уменьшаются паровые потери). Он открывается при давлении 1,1-1,5 кгс/см2. Впускной клапан открывается при понижении давления в системе относительно атмосферного на 0,03-0,13 кгс/см2 (на остывающем двигателе).

Тепловой режим работы двигателя поддерживается термостатом и электровентилятором радиатора. Последний включается датчиком, ввернутым в левый бачок радиатора (на двигателе ВАЗ-2110) или через реле по сигналу электронного блока управления двигателем (на двигателях ВАЗ-2111, -2112). Контакты датчика замыкаются при температуре 99±2°С, а размыкаются при температуре 94±2°С.

Для контроля температуры охлаждающей жидкости в головку блока цилиндров двигателя ввернут датчик, связанный с указателем температуры на приборной панели. В выпускном патрубке впрыскных двигателей (ВАЗ-2111, -2112) установлен дополнительный датчик температуры, выдающий информацию для электронного блока управления двигателем.

Насос охлаждающей жидкости - лопастной, центробежного типа, приводится от шкива коленчатого вала зубчатым ремнем привода газораспределительного механизма. Корпус насоса - алюминиевый. Валик вращается в двухрядном подшипнике с «пожизненным» запасом пластичной смазки. Наружное кольцо подшипника стопорится винтом. На передний конец валика напрессован зубчатый шкив, на задний - крыльчатка. К торцу крыльчатки прижато упорное кольцо из графитосодержащей композиции, под которым находится сальник. При выходе насоса из строя рекомендуется заменять его в сборе.

Перераспределением потоков жидкости управляет термостат. На холодном двигателе перепускной клапан термостата перекрывает патрубок, ведущий к радиатору, и жидкость циркулирует только по малому кругу (через байпасный патрубок термостата), минуя радиатор. На двигателе ВАЗ-2110 малый круг включает радиатор отопителя, впускной коллектор, блок подогрева карбюратора и жидкостную камеру полуавтоматического пускового устройства. На двигателях ВАЗ-2111, -2112 жидкость, кроме отопителя, подается к блоку подогрева дроссельного узла (подогрев впускного коллектора не предусмотрен).

При температуре 87±2°С перепускной клапан термостата начинает перемещаться, открывая основной патрубок; при этом часть жидкости циркулирует по большому кругу, через радиатор. При температуре около 102°С патрубок полностью открывается, и вся жидкость циркулирует по большому кругу. Ход основного клапана должен составлять не менее 8 мм.

Термостат двигателя ВАЗ-2112 имеет повышенное сопротивление байпасного клапана (дроссельное отверстие), за счет чего увеличивается поток жидкости через радиатор отопителя.

Охлаждающая жидкость заливается в систему через расширительный бачок. Он изготовлен из полупрозрачного полиэтилена, что позволяет визуально контролировать уровень жидкости. Бортовая система контроля также сообщает о падении уровня жидкости, для этого в крышке бачка предусмотрен датчик. С бачком также соединены две пароотводные трубки: одна - от радиатора отопителя, другая - от радиатора охлаждения двигателя.

Радиатор состоит из двух вертикальных пластмассовых бачков (левый - с перегородкой) и двух горизонтальных рядов круглых алюминиевых трубок с напрессованными охлаждающими пластинами. Для повышения эффективности охлаждения пластины штампуются с насечкой. Трубки соединены с бачками через резиновую прокладку. Жидкость подается через верхний патрубок, а отводится через нижний. Рядом с впускным патрубком расположен тонкий патрубок пароотводной трубки.

Емкость системы жидкостного охлаждения зависит от размеров и степени форсирования (например, степени сжатия) двигателя и в среднем составляет 0,2.,.0,3 л на лошадиную силу. Поэтому у легковых автомобилей она содержит до 8...12 л жидкости, у грузовых машин с бензиновым карбюраторным двигателем — до 30 л, а у грузовиков с дизельным двигателем — до 50 л. Антифриз, содержащий антикоррозийные и антивспенивающие добавки, а также добавки, исключающие образование накипи, марки тосол А-40 или А-65 имеет температуру загустения соответственно — 40 и — 65°С. При работе двигателя жидкость, омывающая его цилиндры и головку, нагревается и открывает автоматический клапан (термостат), расположенный в трубопроводе, соединяющем двигатель с радиатором. Насос, при-вводимый в действие от коленчатого вала, создает циркуляцию жидкости в системе. Горячая жидкость, проходя по трубкам радиатора, отдает тепло воздуху, подаваемому в него вентилятором. Интенсивность охлаждения двигателя можно менять, изменяя интенсивность циркуляции жидкости или интенсивность воздушного потока, проходящего через радиатор, в зависимости от температуры воздуха окружающей среды или условий движения (скорость, нагрузка и т.д.).