Как работает турбовинтовой двигатель. Что значит "турбовинтовой двигатель"

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Найти

Что значит "турбовинтовой двигатель"

Энциклопедический словарь, 1998 г.

турбовинтовой двигатель

ТУРБОВИНТОВОЙ ДВИГАТЕЛЬ (ТВД) турбокомпрессорный двигатель, в котором тяга в основном создается воздушным винтом, приводимым во вращение газовой турбиной, и частично прямой реакцией потока газов, вытекающих из реактивного сопла.

Турбовинтовой двигатель

Ввиду того, что как лопасти вентилятора, так и лопасти винта для эффективного функционирования должны работать на дозвуковых скоростях, вентилятор в кольцевом обтекателе является более эффективным на больших скоростях.

Двигатель называют сердцем самолёта. И это действительно так. Ведь без него самолёт перестанет быть самолётом. Чем мощнее двигатель, тем быстрее самолёт преодолеет силу сопротивления воздуха и тем большую скорость он сможет развить.

«Но то же самое можно сказать и об автомобиле», - возразите вы. И будете правы. Без двигателя ни самолёт, ни автомобиль не смогут двигаться.

Для чего же нужен двигатель?

Любой двигатель, авиационный или автомобильный, предназначен для создания тяги. И принцип работы у них почти одинаков. Но авиационные двигатели всё-таки имеют свои особенности. Они отличаются от автомобильных размерами и меньшим удельным весом, то есть, весом, приходящимся на единицу мощности. Удельный вес авиационных двигателей в десятки и даже сотни раз меньше удельного веса автомобильных. Ну и, конечно же, в авиации они выполнятся из более лёгких и прочных материалов. Конструкция авиационного двигателя такова, что он может надёжно работать в любом перевёрнутом положении, ведь самолёту иногда приходится выполнять различные манёвры в воздухе. И ещё одна его важная особенность – возможность устойчиво работать, не теряя мощность, на высоте, когда падают плотность и давление воздуха.

Авиационные двигатели

Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.

По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.

Двигатели первой группы называются воздушными , или атмосферными. А вторая группа получила название ракетных . Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.

Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.

Винтовые двигатели

Воздушные двигатели делятся на винтовые и реактивные .

В свою очередь, винтовые подразделяются на винто-моторные, или поршневые , и турбовинтовые . И у тех, и у других движителем служит воздушный винт. Но у винтомоторных тепловой машиной является мотор, а у турбовинтовых – турбокомпрессор.

Поршневой (винто-моторный) двигатель

Поршневые двигатели можно назвать ровесниками современной авиации. Они устанавливались на первых самолётах, поднятых в воздух братьями Райт. И вплоть до 40-х годов ХХ века альтернативы им не было. Но, несмотря на то, что впоследствии были изобретены и другие двигатели, основанные на совершенно другом принципе работы, поршневые используются в авиации и сейчас.

Современный авиационный поршневой двигатель представляет собой двигатель внутреннего сгорания (ДВС). Принцип его работы такой же, как и у автомобильных ДВС. Разница лишь в том, что движение поршня через специальные механизмы в автомобиле передаётся на колёса, а в самолёте – на воздушный винт. А лопасти винта захватывают воздух, отбрасывают его назад, тем самым создавая тягу.

Турбовинтовой двигатель (ТВД)

1 - воздушный винт; 2 - редуктор; 3- турбокомпрессор.

Турбовинтовой двигатель является разновидностью газотурбинного двигателя.

Простейшую конструкцию газотурбинного двигателя можно представить как вал, на котором находятся два диска с лопатками, между которыми расположена камера сгорания. Первый диск – диск компрессора. Второй – диск турбины. Атмосферный воздух сжимается в компрессоре и подаётся в камеру сгорания. Туда же подаётся и топливо. Смесь воздуха с топливом с помощью свечи зажигания поджигается и сгорает, образуя продукты сгорания под высоким давлением, которые приводят во вращение диск турбины. Таким образом, энергия сжатого и нагретого газа преобразуется в механическую работу.

Газотурбинный двигатель первоначально был разработан вовсе не для авиации. В нём нет выходящей реактивной струи. Вся его мощность сосредоточена на валу, который вращает нужные агрегаты. Но в турбовинтовом авиационном двигателе вал приводит во вращение винт, который через редуктор укрепляется на нём перед компрессором. А винт уже и создаёт тягу.

Существуют вертолётные турбовинтовые двигатели, которые приводят в движение несущий винт вертолёта.

Реактивные двигатели

К реактивным относятся турбореактивные, турбореактивные двухконтурные, прямоточные и пульсирующие реактивные двигатели.

Турбореактивный двигатель (ТРД)

Этот тип двигателя является основным в реактивной авиации.

Сила тяги, необходимая для движения, создаётся путём преобразования внутренней энергии топлива в кинетическую энергию реактивной струи продуктов сгорания топлива.

В теплотехнике существует понятие «рабочее тело». Это какое-то условное тело, которое расширяется при нагревании и сжимается при охлаждении. Энергию рабочее тело получат при сжатии, а при расширении оно выполняет механическую работу, благодаря которой приводится в движение рабочий орган.

В турбореактивном авиационном двигателе рабочим телом является атмосферный воздух, который через входное устройство подаётся в компрессор, где и сжимается. Следующий этап – камера сгорания, где воздух нагревается и смешивается с продуктами сгорания керосина. Образовавшаяся газовоздушная смесь попадает на турбину, через рабочие лопатки вращает её, расширяется и теряет часть своей энергии. Эта энергия превращается в механическую энергию основного вала, расходуется на работу компрессора, а также на работу топливных и масляных насосов, привода электрогенераторов, которые вырабатывают электроэнергию для различных бортовых систем самолёта.

Но основная часть энергии газовоздушной смеси разгоняется в специальном сужающемся устройстве, которое называется реактивное сопло. За счёт реактивной струи появляется сила тяги двигателя.

На сверхзвуковых самолётах применяют турбореактивные двигатели с форсажной камерой. В них между турбиной и соплом установлена дополнительная камера, которая и называется форсажной. В этой камере сжигается дополнительное топливо, что вызывает увеличение тяги (форсаж) до 50 %. Но его расход в таких двигателях значительно выше, чем у обычных ТРД.

Турбореактивный двухконтурный двигатель (ТРДД)

1 - компрессор низкого давления; 2 - внутренний контур; 3 - выходной поток внутреннего контура; 4 - выходной поток внешнего контура.

Этот двигатель имеет два контура: внутренний и внешний. Его отличие от обычного турбореактивного заключается в том, что весь воздушный поток сначала попадает в компрессор низкого давления. Затем основная часть воздуха проходит по внутреннему контуру такой же путь, как и в обычном турбореактивном двигателе. То есть, попадает в другой компрессор, сжимается, нагревается, смешивается в камере сгорания с топливом и разгоняется в сопле для образования реактивной тяги. А вторая часть воздуха проходит напрямую по внешнему контуру поверх внутреннего контура, оставаясь холодной, и выбрасывается, не сгорая. Тем самым создаётся дополнительная тяга и уменьшается расход топлива, что очень важно для самолёта. А также снижается и шум двигателя.

Прямоточный воздушно-реактивный двигатель (ПВРД)

1 - воздух; 2 - впрыск горючего; 3 - стабилизатор пламени; 4 - камера сгорани; 5 - сопло; 6 - форсунки.

Этот двигатель не имеет ни турбины, ни компрессора. Он состоит из трёх обязательных элементов: диффузора, камеры сгорания и сопла.

Диффузор повышает статистическое давление за счёт торможения встречного потока воздуха. В камере сгорания происходит сгорание топлива. Окислителем служит кислород воздуха, поступающий из диффузора. Тяга создаётся за счёт реактивной струи, вытекающей из сопла.

В зависимости от скорости полёта ПВРД подразделяют на дозвуковые, сверхзвуковые и гиперзвуковые. Каждая из групп имеет свои конструктивные особенности.

Пульсирующий воздушно-реактивный двигатель

1 - воздух; 2 - горючее; 3 - клапанная решётка; 4 - форсунки; 5 - свеча зажигания; 6 - камера сгорания; 7 - сопло.

В таком двигателе имеется камера сгорания с входными клапанами и длинное выходное сопло цилиндрической формы. Когда клапаны открываются, в камеру сгорания подаются воздух и топливо. Искра свечи зажигания поджигает смесь. Образуется избыточное давление, которое закрывает клапаны. А продукты сгорания выбрасываются через сопло, тем самым создавая реактивную тягу.

И прямоточные, и пульсирующие воздушно-реактивные двигатели на практике применяются довольно редко.

Ракетные двигатели

В авиации ракетные двигатели используются в особых случаях как дополнительные двигатели для сокращения длины разбега самолёта при взлёте или сокращения длины пробега при посадке, а также для увеличения мощности при полётах в чрезвычайных ситуациях. Применяют их и на исследовательских или экспериментальных самолётах.

Ракетные двигатели разделяются на твёрдотопливные и жидкостные. В твёрдотопливных (РДТТ) и топливо, и окислитель находятся в твёрдом состоянии, а в жидкостных (ЖРД) – в жидком агрегатном состоянии. Сгорание топлива происходит в камере сгорания – основной части ракетного двигателя. А газы, образуемые при сгорании, выбрасываются через реактивное сопло, создавая реактивную тягу.

Так как окислитель для горения ракетные двигатели везут с собой, то они не зависят от воздушной среды, и прекрасно зарекомендовали себя в разреженном и безвоздушном пространстве. Их используют для подъёма и разгона баллистических ракет, космических кораблей, запуска спутников.


Турбовинтовой двигатель ВК-1500 производится на объединении ОАО «Мотор Сич».
Предназначен для установки в качестве маршевого двигателя на самолеты воздушных линий пассажировместимостью до 30 чел.
Высокий уровень культуры проектирования, производства в сочетании с применением современной системы регулирования дали возможность создать двигатель с высокими эксплуатационными характеристиками, надежностью и большими ресурсами.
Вертолетный вариант двигателя ВК-1500 может устанавливаться на вертолетах среднего класса. ...


Турбовинтовой двигатель ТВД-20 разработан в Омском авиамоторном КБ на базе турбовинтового двигателя ТВД-10.
Первая серийная версия двигателя получила обозначение ТВД-20–01. Эта версия двигателя, выпускаемая с 1992 года, устанавливается на легкий многоцелевой самолет Ан-3.
Усовершенствованная версия двигателя получила обозначение ТВД-20М. Этот двигатель используется на легком самолете Аэропрогресс Т-101В с трехлопастным пропеллером АВ-17. ...

Турбовальный двигатель ТВ3–117 предназначен для установки на вертолеты. Он является одним из лучших двигателей в мире по экономичности в своем классе, что достигнуто благодаря высоким КПД основных узлов (КПД компрессора равен 86%, КПД турбины компрессора — 91%, КПД свободной турбины — 96%). Величины удельного расхода топлива и удельной массы соответствуют лучшим мировым стандартам. Двигатель имеет большие запасы газодинамической устойчивости. В конструкции двигателя применены прогрессивные технические решения: титановый ротор компрессора, сваренный из отдельных дисков электронно-лучевой сваркой; рабочие и направляющие лопатки компрессора из титанового сплава, полученные методом холодной вальцовки; контактные графитовые уплотнения масляных полостей; на новейших модификациях применяется электронно-гидромеханическая система регулирования и управления и др. Двигатель имеет большой ресурс, обладает высокой надежностью, простотой обслуживания, хорошей ремонтопригодностью. ...


В 1960 году был объявлен конкурс на создание газотурбинного двигателя мощностью 1250 л.с. для перспективного вертолёта Ми-8. Победителем конкурса проектов стало ОКБ-117 им. В.Я.Климова под руководством С.П.Изотова, которому и была поручена разработка двигателя и главного редуктора ВР-8. ТВ2–117 стал первым отечественным специализированным вертолётным двигателем. Первые образцы двигателей изготовлены летом 1962 года. Серийное производство организовано в 1965 году.
Двигатель имеет девятиступенчатый осевой компрессор, камеру сгорания кольцевого типа и двухступенчатую турбину. ...


Разработка турбовинтового двигателя ТВ-12 для бомбардировщика Ту-95 началась в ОКБ-276 под руководством Н.Д.Кузнецова в 1951 году. В декабре 1953 года Министерство авиационной промышленности утвердило общую компоновку двигателя. Летом 1954 года начались доводочные испытания ТВ-12 на летающей лаборатории Ту-4ЛЛ. В декабре новый двигатель был установлен на втором прототипе Ту-95 («95–2»). В 1955 году началось серийное производство двигателя на Куйбышевском моторостроительном заводе №24 под обозначением НК-12.
НК-12 состоит из редуктора, осевого компрессора, камеры сгорания, реактивной турбины и нерегулируемого реактивного сопла. Редуктор двигателя — дифференциальный, с передаточным отношением от ротора к воздушному винту 0,088. Редуктор передаёт мощность турбины на соосный воздушный винт (передний винт потребляет 54,4% мощности, задний — 45,6%). ...


Винтовентиляторный двигатель Д-27 разработан в Запорожском МКБ им. И.Г.Ивченко в середине 80-х годов. В разработке двигателя активное участие принимали специалисты ЦИАМ и ЦАГИ. Винтовентиляторы СВ-27 с широкохордовыми саблевидными лопастями разработатывались в НПО «Авиасила» (г. Ступино). Автоматическая система управления двигателем СУ-77 разрабатывалась в Уфимском НПО «Молния». Первые стендовые испытания проведены в 1988 году. В 1990 году двигатель испытывался на летающей лаборатории Ил-76. В 1993 году 4 двигателя Д-27 были установлены на первом прототипе транспортного самолёта Ан-70. Серийное производство предполагается на запорожском заводе «Мотор-Сiч» и Уфимском моторостроительном заводе.
Запуск двигателя автоматический с раскруткой ротора высокого давления воздушным турбостартером от ВСУ, аэродромного источника сжатого воздуха или от работающего двигателя. ...


Турбовинтовентиляторный трехвальный двигатель Д-236 разрабатывался как демонстратор технологий на Запорожском ЗМКБ "Прогресс".
Основой для двигателя послужил турбовентиляторный двигатель Д-36. Разработка двигателя была начата в 1979 году. На двигатель установлен пропеллер СВ-36. Первоначальные испытания двигателя проходили на самолете Ил-76. С 1987 года к испытаниям подключилось ОКБ им. Яковлева. Д-236 был установлен на специализированную версию самолета Як-42Е-ЛЛ вместо одного из двигателей Д-36. Первый полет самолета с такой двигательной установкой состоялся в марте 1991 года. ...


Двигатель АИ-24 конструкции А.Г. Ивченко одновальный турбовинтовой. В настоящее время на предприятиях гражданской авиации в основном эксплуатируются двигатели АИ-24 II серии.
Двигатель АИ-24 состоит из следующих узлов: дифференциального планетарного редуктора; лобового картера; 10-ступенчатого осевого компрессора; кольцевой камеры сгорания; 3-ступенчатой осевой реактивной турбины; нерегулируемого реактивного сопла.
Для обеспечения работы двигателя имеются системы: смазки и суфлирования; топливорегулирования; запуска; управления воздушным винтом; противопожарная; противообледенительная.
На самолетах Ан-24 и Ан-24Б, эксплуатируемых в условиях высоких температур наружного воздуха, силовая установка оборудуется системой впрыска воды в компрессор двигателя. ...


Двигатель турбовинтовой высотный АИ-20Д серии 5, 5Э является дальнейшим развитием широко известного базового двигателя АИ-20, используется на самолетах, выполняющих перевозки на линиях средней и дальней протяженности.
Оборудован системами: Автоматизированного запуска
Противообледенения
Противопожарной
Следящего упора для защиты по отрицательной тяге и автоматического флюгирования воздушного винта
Успешно эксплуатируются во многих странах мира (Индия, Бангладеш, Эфиопия, Перу, Никарагуа и др.) в условиях высоких температур наружного воздуха и высокогорных аэродромов. ...

Реактивные авиадвигатели во второй половине XX века открыли новые возможности в авиации: полеты на скоростях, превышающих скорость звука, создание самолетов с высокой грузоподъемностью, сделали возможным массовые путешествия на большие расстояния. Турбореактивный двигатель по праву считается одним из самых важных механизмов ушедшего века, несмотря на простой принцип работы.

История

Первый самолет братьев Райт, самостоятельно оторвавшийся от Земли в 1903 году, был оснащен поршневым двигателем внутреннего сгорания. И на протяжении сорока лет этот тип двигателя оставался основным в самолетостроении. Но во время Второй мировой войны стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу – как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель.

Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости Константин Циолковский. Еще в 1903 году, когда братья Райт запускали свой первый самолет «Флайер-1», российский ученый опубликовал свой труд «Исследование мировых пространств реактивными приборами», в котором он разработал основы теории реактивного движения. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Циолковскому потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.

Реактивный самолет Су-11 с двигателями ТР-1, разработки КБ Люльки

Тем не менее, родиной серийного турбореактивного двигателя суждено было стать совсем другой стране – Германии. Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: Heinkel, BMW, Daimler-Benz и даже Porsche. Основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109-004, устанавливаемому на первый же в мире турбореактивный самолет Me 262.

Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе.

В СССР разработкой турбореактивных двигателей наиболее удачно занимался легендарный авиаконструктор Архип Люлька. Еще в апреле 1940 года он запатентовал собственную схему двухконтурного турбореактивного двигателя, позже получившую мировое признание. Архип Люлька не нашел поддержки у руководства страны. С началом войны ему вообще предложили переключиться на танковые двигатели. И только когда у немцев появились самолеты с турбореактивными двигателями, Люльке было приказано в срочном порядке возобновить работы по отечественному турбореактивному двигателю ТР-1.

Уже в феврале 1947 года двигатель прошел первые испытания, а 28 мая свой первый полет совершил реактивный самолет Су-11 с первыми отечественными двигателями ТР-1, разработки КБ А.М. Люльки, ныне филиала Уфимского моторостроительного ПО, входящего в Объединенную двигателестроительную корпорацию (ОДК).

Принцип работы

Турбореактивный двигатель (ТРД) работает на принципе обычной тепловой машины. Не углубляясь в законы термодинамики, тепловой двигатель можно определить как машину для преобразования энергии в механическую работу. Этой энергией обладает так называемое рабочее тело – используемый внутри машины газ или пар. При сжатии в машине рабочее тело получает энергию, а при последующем его расширении мы имеем полезную механическую работу.

При этом понятно, что работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. Поэтому газ перед расширением или во время него нужно еще и нагревать, а перед сжатием – охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип работы турбореактивного двигателя.

Таким образом, любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и охлаждения. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера.



Рабочее тело – воздух, попадает в компрессор и сжимается там. В компрессоре на одной вращающейся оси укреплены металлические диски, по венцам которых размещены так называемые «рабочие лопатки». Они «захватывают» наружный воздух, отбрасывая его внутрь двигателя.

Далее воздух поступает в камеру сгорания, где нагревается и смешивается с продуктами сгорания (керосина). Камера сгорания опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб, которые называются жаровыми трубами. В жаровые трубы через специальные форсунки и подается авиационный керосин.

Из камеры сгорания нагретое рабочее тело поступает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. Ее раскручивает горячий газ по тому же принципу, как воздух детскую игрушку-пропеллер. Ступеней у турбины немного, обычно от одной до трех-четырех. Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения – до 30 тысяч оборотов в минуту. Факел из камеры сгорания достигает температуры от 1100 до 1500 градусов Цельсия. Воздух здесь расширяется, приводя турбину в движение и отдавая ей часть своей энергии.

После турбины – реактивное сопло, где рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создает реактивную тягу.

Поколения турбореактивных двигателей

Несмотря на то, что точной классификации поколений турбореактивных двигателей в принципе не существует, можно в общих чертах описать основные типы на различных этапах развития двигателестроения.

К двигателям первого поколения относят немецкие и английские двигатели времен Второй мировой войны, а также советский ВК-1, который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

Истребитель МИГ-15

ТРД второго поколения отличаются уже возможным наличием осевого компрессора, форсажной камеры и регулируемого воздухозаборника. Среди советских примеров двигатель Р-11Ф2С-300 для самолета МиГ-21.

Двигатели третьего поколения характеризуются увеличенной степенью сжатия, что достигалось увеличением ступеней компрессора и турбин, и появлением двухконтурности. Технически это самые сложные двигатели.

Появление новых материалов, которые позволяют значимо поднять рабочие температуры, привело к созданию двигателей четвертого поколения. Среди таких двигателей – отечественный АЛ-31 разработки ОДК для истребителя Су-27.

Сегодня на уфимском предприятии ОДК начинается выпуск авиационных двигателей пятого поколения. Новые агрегаты установят на истребитель Т-50 (ПАК ФА), который приходит на смену Су-27. Новая силовая установка на Т-50 с увеличенной мощностью сделает самолет еще более маневренным, а главное – откроет новую эпоху в отечественном авиастроении.

Наконец-то двигателестроители обратили внимание не только на создание моторов для самолётов большой авиации, но и готовы помочь в оснащении двигателями воздушных судов региональной и малой авиации. Причём на самолёты местных воздушных линий планируется установка турбовинтовых двигателей отечественного производства, изготовленных на предприятиях России и из отечественных материалов.

Особенности производства нового турбовинтового двигателя

В рамках программы импортозамещения Уральский завод гражданской авиации (УЗГА) разработал проект и готовит производство турбовинтового двигателя ВК-800С для самолёта чешского производства L-410UVP-E20, который изготавливают на этом же предприятии. Ранее эта машина была оснащена силовыми установками М601 и Н80, изготовленными в Чехии.

Инженер-конструктор, созданного в Санкт-Петербурге обособленного подразделения по импортозамещению, подтвердил, что в научно-производственном центре «Лопатки.Компрессоры. Турбины.» (НПЦ «ЛКТ») в мае уже будут собраны три опытных мотора ВК-800С, летом начнутся их стендовые испытания, а осенью их тестируют в воздухе.

НПЦ «ЛКТ» выбрано неслучайно для сборки этих силовых установок, поскольку изготовление лопаток турбин и роторного колеса – это и так высокие технологии, а организовать на таком центре дополнительное производство не стало большой проблемой. Поставлена задача добиться использования для производства двигателей ВК-800С комплектующих только из России.

Это становится возможным, поскольку агрегаты и основные узлы для этих моторов стали производить в Омске, Перми, Самаре и других российских городах, где расположены заводы и предприятия соответствующего профиля. Минпромторг уже сделал заказ на производство двух самолётов L-410UVP-E20 с российскими двигателями, а серийный выпуск ВК-800С начнётся сразу после процедуры сертификации, которую планируют закончить в течение двух лет.

Новый турбовинтовой двигатель ВК-800С для лёгких многоцелевых самолётов.

В сущности мотор ВК-800С – это версия вертолётного турбовального двигателя ВК-800В, который был создан в одном из подразделений объединённой двигателестроительной корпорации «ОДК-Климов» и предназначен для многоцелевых самолётов грузоподъёмностью до 1.5 тонны. Это весьма компактный двигатель, имеющий длину около одного метра, весом не более 140 кг и развивающий мощность на взлёте порядка 900 л.с.

«Русский самолёт» L-410

Ещё в 2008 году начался приход русских на чешский завод, точнее, после приобретения 51% акций, а в 2015 году УЗГА построил новые цеха и начал производство L-410 в ходе процесса постепенно заменяя все узлы и детали на отечественные комплектующее. Сам чехи уже называют L-410 «русским самолётом» и в действительности он станет полностью отечественным, как только уральский завод наладит серийный выпуск российских турбовинтовых двигателей ВК-800С.

Уральские специалисты наладили выпуск L-410 в 2016 году и готовят эти машины к суровым русским условиям. Самолёт оснащают нескольким видам шасси – лыжное предназначено для посадки на снежную поверхность, а поплавковое – на воду также готовится вариант для посадки на мягкий грунт и неподготовленные площадки. Словом, машину адаптируют полностью к эксплуатации в любых климатических условиях России, в том числе и на Крайнем Севере.

Лыжное шасси для L-410 найдёт применение на аэродромах Крайнего Севера и неподготовленных площадках Арктики.

Выпускаемый на уральском заводе L-410 получил современную авионику, связь и оборудование, изготовленные исключительно из отечественных комплектующих. Очевидно, что и двигатели у этой машины скоро будут российского производства.

Многоцелевой 19-местный самолёт L-410 востребован в различных вариантах как для гражданской авиации, так и для военной. Для обоих ведомств эта машина превосходно подходит как учебно-тренировочная для подготовки и обучения курсантов. На данный момент — это единственный самолёт обучения будущих пилотов военно-транспортной авиации. Простая и лёгкая в управлении машина способна прощать ошибки в пилотировании, особенно на посадке и лучших самолётов этого класса для подготовки курсантов пока не предвидится.

Пассажирский салон L-410 весьма комфортный и удобный.

Для гражданской авиации машина найдёт применение в грузопассажирском варианте, а её санитарная версия будет востребована в труднодоступной местности и при проведении поисково-спасательных работ. В военном ведомстве найдут применение разведывательные, санитарные и десантные варианты L-410 .

Заключение

На настоящее время в России отсутствуют самолёты подобного класса, такая машина нужна для первоначального обучения и для потребностей Минобороны. Хорошо известна неприхотливость этого самолёта, а оснащение его турбовинтовыми двигателями позволят использовать машину в полной мере, в том числе и для нужд Арктики. Значительно расширит область применения L-410 разработка нового шасси для мягких грунтов.