В чем суть аналитической машины бэббиджа. Отрывок, характеризующий Разностная машина Чарльза Бэббиджа

Изобретения Бэббиджа

Малая разностная машина

Впервые Бэббидж задумался о создании механизма, который позволил бы производить автоматически сложные вычисления с большой точностью в 1812 году. На эти мысли его натолкнуло изучение логарифмических таблиц, при пересчёте которых были выявлены многочисленные ошибки в вычислениях, обусловленные человеческим фактором. Ещё тогда он начал осмысливать возможность проведения сложных математических расчётов при помощи механических аппаратов.

Также очень большое влияние на Бэббиджа оказали работы французского учёного барона де Прони, который предложил идею разделения труда при вычислении больших таблиц (логарифмических, тригонометрических и др.). Он предлагал разделить процесс вычисления на три уровня. Первый уровень -- несколько выдающихся математиков, подготавливающих математическое обеспечение. Второй уровень -- образованные технологи, которые организовывали рутинный процесс вычислительных работ. А третий уровень занимали сами вычислители, от которых требовалось лишь умение складывать и вычитать. Идеи Прони навели Бэббиджа на мысль о замене третьего уровня (вычислителей) механическим устройством.

Однако Бэббидж не сразу начал заниматься развитием идеи построения вычислительного механизма. Лишь в 1819 году, когда он заинтересовался астрономией, он более точно определил свои идеи и сформулировал принципы вычисления таблиц разностным методом при помощи машины, которую он впоследствии назвал разностной. Эта машина должна была производить комплекс вычислений, используя только операцию сложения. В 1819 году Чарльз Бэббидж приступил к созданию малой разностной машины, а в1822 году он закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц. Он продемонстрировал работу машины на примере вычисления членов последовательности. Работа разностной машины была основана на методе конечных разностей. Малая машина была полностью механической и состояла из множества шестерёнок и рычагов. В ней использовалась десятичная система счисления. Она оперировала 18-разрядными числами с точностью до восьмого знака после запятой и обеспечивала скорость вычислений 12 членов последовательности в 1 минуту. Малая разностная машина могла считать значения многочленов 7-й степени.

За создание разностной машины Бэббидж был награждён первой золотой медалью Астрономического общества. Однако малая разностная машина была экспериментальной, так как имела небольшую память и не могла быть использована для больших вычислений.

Разностная машина Чарльза Бэббиджа

В 1822 году Бэббидж задумался о создании большой разностной машины, которая позволила бы заменить огромное количество людей, занимающихся вычислением различных астрономических, навигационных и математических таблиц. Это позволило бы сэкономить затраты на оплату труда, а также избавиться от ошибок, связанных с человеческим фактором.

Со своим предложением профинансировать создание большой разностной машины Чарльз Бэббидж обратился в Королевское и Астрономическое общества. И те, и другие отозвались на это предложение положительно. В 1823 году Бэббидж получил 1500 фунтов стерлингов и приступил к разработке новой машины. Он планировал сконструировать машину за 3 года. Однако Бэббидж не учёл сложности конструкции, а также технические возможности того времени. И уже к 1827 году было затрачено 3500 фунтов стерлингов (более 1000 личных денег). Ход работы по созданию разностной машины сильно замедлился.

Кроме того, на процесс конструирования машины большое влияние оказали трагические события в жизни Бэббиджа в 1827 году. В этот год он похоронил отца, жену и двоих детей. После этих событий у него ухудшилось самочувствие, и он не мог заниматься конструированием машины. Чтобы восстановить здоровье, он поехал в путешествие по континенту.

После путешествия в 1828 году Бэббидж продолжил разработку, но денег уже не было. Он обращался ко многим обществам и правительству с просьбой о помощи. Только в 1830 году он получил от правительства ещё 9000 фунтов стерлингов, после чего продолжил конструирование разностной машины.

В 1834 году работы по созданию машины были приостановлены. На тот момент уже было затрачено 17000 фунтов государственных денег и 6000 личных. С 1834 по 1842 год правительство обдумывало, оказывать поддержку проекту или нет. А в 1842 году отказалось финансировать проект. Разностная машина так и не была достроена.

Большая разностная машина должна была состоять из 25 000 деталей, весить почти 14 тонн и быть 2,5 метра высотой. Кроме того, разностная машина должна была быть оснащена печатным устройством для вывода результатов. Память была рассчитана на 1000 50-разрядных чисел.

Возможно, причиной неудачи создания разностной машины, наряду с трагическими событиями 1827 года и недостаточным уровнем технологий того времени, стала излишняя разносторонность Бэббиджа. Он поднимался с экспедицией на Везувий, погружался на дно озера в водолазном колоколе, участвовал в археологических раскопках, изучал залегание руд, спускаясь в шахты. Почти год он занимался безопасностью железнодорожного движения и сделал очень много специального оборудования -- в том числе создалспидометр. Кроме того, при конструировании разностной машины он разработал немало оборудования для обработки металла. В 1851 году Чарльз Бэббидж предпринял попытку сконструировать улучшенную версию разностной машины -- «Разностную машину 2». Но и этот проект не был удачным.

Одна из 6-ти демонстрационных моделей вычислительной части разностной машины Чарльза Бэббиджа, собранная после его смерти сыном Генри из деталей, найденных в лаборатории.

Однако труды Бэббиджа по созданию разностной машины не пропали даром. В 1854 году шведский изобретатель Шойц по работам Бэббиджа построил несколько разностных машин. А ещё через некоторое время Мартин Виберг усовершенствовал машину Шойца и использовал её для расчётов и публикации логарифмических таблиц.

В 1891 году была построена «Разностная машина 2», которая находится сейчас в Лондонском научном музее.

Где-то в 1800-х годах Чарльз Бэббидж изобрел первый компьютер, тогда слово «компьютер» имело иное значение, и он назвал свое изобретение Разностной машиной или Аналитической машиной. Гениальный изобретатель опережал свое время, но, к сожалению, не завершил свое изобретение, и лишь спустя сто лет был изобретен первый настоящий компьютер, но это уже другая история. А сегодняшняя статья об Аналитической Машине Бэббиджа.

Согласно чертежам Бэббиджа машина должна была состоять из следующих частей:

1. Склад - жесткий диск, память; 2. Мельница - процессор; 3. Паровой двигатель - блок питания; 4. Принтер - принтер; 5. Карты операций - программы; 6. Карты переменных - система адресации; 7. Числовые карты - для ввода чисел; 8. Управляющие барабаны - микропрограммы.

Самовычисляющая машина

В этой статье мы попробуем выяснить устройство Аналитической Машины, но для начала следует отметить, что она принадлежала к распространенному с 1740-х годов семейству «автоматических» (само-) механизмов.

И хотя Бэббидж избегал использования этого понятия, в новостях и изданиях ее описывали именно так:

За завтраком я имела удовольствие сидеть рядом с мистером Бэббиджем, известным в наших кругах изобретателем самовычисляющей машины. Взгляд его кажется столь проницательным, будто он видит науку - или любой другой предмет, ставший объектом его внимания, - насквозь.
Эди Седжвик, 1841 г.
Центробежный регулятор - первый из «самодействующих» механизмов индустриальной эпохи. Кстати, именно он является одной из самых узнаваемых частей парового двигателя.


При разгоне двигателя шары отклоняются от оси под воздействием центробежной силы, из-за этого муфта сдвигается и ограничивает приток пара, а машина замедляет ход. Замедление машины опускает шары и этим открывает клапан - открывается приток пара, цикл замкнулся.

Сама же конструкция Разностной машины была схожа с арифмометрами, и, как арифмометры, Машина состояла из длинной череды зубчатых колес, которые складывают числа, а потом выдают сумму.

Где-то в 1834 году Бэббидж усовершенствовал конструкцию, и благодаря возврату суммы обратно в машину стали доступны более сложные вычисления.

Работа Аналитической машины основывалась именно на «пожирании своего хвоста», и работала система благодаря сложной цепи шестерней, которые управлялись перфокартами и барабанами, вычисляя суммы и отправляя результаты на склад, который состоял из ряда зубчатых колес.

Примерно все взаимодействовало так:

  1. Карты операций (А) указывают картам переменных (В), что нужно запросить числа для расчетов;
  2. Числа вводятся с числовых карт (С) или со склада (D) и поочередно поступают на ось ввода (Е);
  3. Ось ввода передает числа на центральные колеса (F);
  4. Карта операции дает команду сложения чисел или умножения или иную, а барабаны (G) поворачиваются до положения, в котором их штифты будут соответствовать операции.
  5. Барабаны активируют рычаги, соединяя шестерни мельницы (H) с центральными колесами. А уже в мельнице определенные устройства отвечают за сложение, умножение и иные действия;
  6. Шестерни выполняют умножение исходных чисел;
  7. Мельница при необходимости может зацикливать действия, передавая команды на разные участки перфокарты;
  8. Результат попадает на ось вывода (I).
  9. Ось вывода передает данные на принтер (D) или отправляет на склад согласно картам переменных;
  10. Карты операций подают команду на подачу звонка (J) и на остановку Машины. Всё!

Память: склад

Любому компьютеру, паровому или электронному, необходима возможность хранения данных. В изобретении Бэббиджа он назывался складом, и, как практически вся машина, он состоял из зубчатых колес, расположенных в высоких столбцах. На каждом из столбцов хранилось только одно число не длиннее пятидесяти цифр, а верхнее колесо определяло положительно число или отрицательно.

Согласно моим оценкам, пройдет немало времени, прежде чем эти ограничения перестанут удовлетворять нуждам науки.
Чарльз Бэббидж
На чертежах Бэббиджа склад состоял из двух параллельных рядов высоких числовых столбцов, и в каждом из них хранилось одно число. Одна из сторон склада сообщалась с мельницей.

Кроме зубчатых колес числа могли храниться на числовых картах в виде комбинаций отверстий:

На своих схемах Чарльз изображал ряд столбцов уходящим за край листа и не указывал конечное количество чисел, которые могла бы запоминать заключительная версия Машины.

Рейки и карты переменных для передачи данных

Для передачи чисел со склада в Машину Бэббидж использовал опять зубчатые колеса рейки с длинными зубцами. Каждое из числовых колес склада с помощью шестеренок были связаны с рейками и при их помощи значения передавались на специальный столбец колец, находящийся между мельницей и складом, и таким же образом числа передавались обратно на склад.


Колеса склада А подключено к рейке В с помощью шестеренки. Обнуляясь, колесо слада поворачивает ось ввода до позиции переданного числа.


Для передачи числа с дальнего конца склада требовалась зубчатая рейка длинной в несколько метров.

На картах переменных нанесены адреса на складе, с которых производится выборка чисел. Эти же карты могут быть запрограммированы на получение значений с числовых карт.
Каждый адрес нанесен на карты переменных в виде отверстий, и их сочетание переключает определенные рычаги:


При отсутствии отверстия на перфокарте рычаг не задействован, но как только отверстие появлялось, рычаг соединял шестеренку со скобой. И шестеренка, поднимаясь вместе со скобой, соединяла колесо ввода с зубчатой рейкой.

Мельница вычислений

После попадания чисел в мельницу начинается главная часть работы Машины - арифметические действия, выполняемые снова и снова.

Бэббиджем были разработаны отдельные узлы сложения, вычитания, умножения и деления, а также один из любимых его механизмов - перенос с предварением.

В своих публикациях Бэббидж очеловечивал Машину и про «сквозной перенос» писал:

В случае сквозного переноса Машина способна предвидеть и действовать в соответствии с предвидением.
Чарльз Бэббидж
Конечно, до переноса числа необходимо было сложить, и происходило это примерно так:

Колесо А обнуляется и на нем задается первое число. Второе число задается на колесе В, которое в сцепке с колесом А. Обнуление первого колеса прибавляет число, которое там содержалось, к значению на колесе В.

Возьмем для примера:

Вспомним школьную арифметику, а именно сложение в столбик и перенос единиц. Если расположить цифры обоих чисел по столбцам, как это сделано в Машине, и складывать их по разрядам, то в первом случае не будет переноса, во втором будет перенесена единица, а в третьем сумма будет равна 9, но перенесенная ранее единица инициирует перенос.

Когда Разностная машина работает, можно наблюдать волнообразные движения рычажков переноса в задней части Машины. Волны происходят из-за последовательных переносов единиц снизу вверх с проверкой инициации новых переносов.


Эта штука переносит единицу снизу вверх по одной!

Программы

В то время программ не существовало, ну точнее они уже были придуманы, но тогда они назывались картами операций и выглядели примерно так:


Карта операций

Программами занималась Ада Лавлейс, и, как истинные аристократы, они отдавали приказы барабанам и картам переменных не контактируя с рабочими механизмами. Даже простое сложение задействовало множество деталей, и при помощи большого барабана один рычаг мог задавать любое значение для восьмидесяти других рычагов.

Согласно отверстиям на картах барабан поворачивается к рычагам разными секциями, которые содержат определенный шифр и задействуют разные наборы рычагов.

И хотя барабаны напоминают валики шарманок, действуют они иначе. Вместо непрерывного вращения барабан поворачивается до определенной позиции и затем двигается вперед, толкая и активируя набор необходимых рычагов.

Карты операций управляют и барабанами, и картами переменных, и выглядят примерно так:

Перфокарты

Первой системой, построенной на перфокартах, был жаккардов станок, и именно им вдохновлялся Бэббидж.


Карта Жаккара, 1850 г.

Принцип их работы прост и гениален одновременно: удерживающий перфокарты рычаг опускается, прижимая карту к набору подпружиненных горизонтальных штырьков. Если под штырьком отсутствует отверстие, то карта сдвигает штырек и наклоняет стержень с крючком так, что он цепляется за штифт. Затем штифты движутся вверх вместе с зацепившимися за них крючками.

Логика и циклы

Перфокарты и шестеренки - это великолепно, но не они делают Разностную машину компьютером. Из устройства для обсчета десятичной арифметики Машина превращается в компьютер благодаря небольшой детали - условному рычагу.

Этот рычаг автоматически опускается, если результат вычислений требует дальнейших действий со стороны программы. И если на определенной позиции барабана стоит штифт, а затем рычаг опускается - запускается новый цикл вычислений.

Таким образом, условный рычаг замыкает цикл, и Машина «поедает собственный хвост»: перфокарты управляют барабанами, барабаны Машиной, Машина барабанами, а барабаны перфокартами.

На этом я закончу сегодняшнюю статью. Если у вас есть какие-то дополнения, то я буду рад обсуждениям в комментариях.

Всем хорошего дня и точных вычислений!

Литература:
«Невероятные приключения Лавлейс и Бэббиджа. Почти правдивая история первого компьютера»

На момент прекращения работ над созданием разностной машины деятельный мозг Бэббиджа был занят решением уже другой, более тяжелой задачи. Бэббидж пожелал создать новый прибор - Аналитическую машину (Analytical Engine). Ее главным отличием от разностной машины должно было стать то обстоятельство, что она была программируемой и могла выполнять любые заданные ей вычисления.

От арифмометра новая машина отличалась наличием регистров. В них сохранялся промежуточный результат вычисления, и с их же помощью выполнялись действия, предписанные программой. Вычислительные возможности, открывшиеся после изобретения регистров, поразили самого Бэббиджа. На этот счет сохранилась следующая реплика изобретателя: «Шесть месяцев я составлял проект машины, более совершенной, чем первая. Я сам совершенно поражен той вычислительной мощностью, которой она будет обладать. Еще год назад я не смог бы в такое поверить!»

Архитектура Аналитической машины Чарльза Бэббиджа уже практически соответствует современным ЭВМ. В ней присутствуют все три классических составляющих компьютера:

Control barrel - управляющий барабан (управляющее устройство - УУ), -store - хранилище (теперь мы называем это памятью - ЗУ) -mill - мельница (арифметическое устройство - АУ).

Регистровая память машины Бэббиджа была способна хранить как минимум сто десятичных чисел по 40 знаков, теоретически же могла быть расширена до тысячи 50-разрядных (для сравнения укажем, что запоминающее устройство одной из первых ЭВМ «Эниак» в 1945 г. сохраняло всего 20 десятиразрядных чисел). Арифметическое устройство имело, как мы бы сейчас сказали, аппаратную поддержку всех четырех действий арифметики. Машина производила сложение за 3 секунды, умножение и деление - за 2 минуты. Эта «мельница» состояла из трех основных регистров: два для операндов, а третий для результатов действий, относящихся к умножению. Имелись также таблица для хранения промежуточных результатов и счетчик числа итераций. Основная программа заносилась на барабан (Управляющее устройство), в дополнение к ней могли использоваться перфокарты, предложенные Жозефом Мари Жаккаром еще в 1801 г. для быстрого перехода с узора на узор в ткацких станках.

Большую помощь в разработке машины Бэббиджу оказала Ада Лавлейс (урожденная Байрон). Лавлейс была дочкой знаменитого английского поэта лорда Байрона, но так его никогда и не увидела, так как незадолго до ее рождения он уехал в Грецию, где и погиб в составе отряда повстанцев. Лавлейс бывала в гостях у Бэббиджа со своей подругой Мэри Соммервилл. Бэббидж всегда относился к ним приветливо и подолгу объяснял назначение всех устройств машины. А вскоре он обнаружил незаурядные математические способности Ады Лавлейс. Именно она впоследствии создаст первые в мире теоретические основы программирования, напишет первый учебник по программированию, и войдет в историю как «первая программистка».

Именно Лавлейс принадлежит идея использования для подачи на вход машины двух потоков перфокарт, которые были названы операционными картами и картами переменных: первые управляли процессом обработки данных, которые были записаны на вторых.

Информация заносилась на перфокарты путем пробивки отверстий. Из операционных карт можно было составить библиотеку функций. Помимо этого, Analytical Engine, по замыслу автора, должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования. Так что Бэббидж стал пионером идеи ввода-вывода.

Бэббидж предлагал также создать механизм для перфорирования цифровых результатов на бланке или металлических пластинках. Для хранения информации в памяти ученый собирался использовать не только перфокарты, но и металлические диски, которые будут поворачиваться на оси. Металлические пластинки и металлические диски могут теперь рассматриваться нами как далекие прототипы магнитных карт и магнитных дисков.

Только в одном отношении аналитическая машина не была автоматической. Функции, записанные таблично, должны были быть заранее отперфорированы. Предвосхищая будущее вычислительных машин, Бэббидж писал: «Кажется наиболее вероятным, что она рассчитывает гораздо быстрее по соответствующим формулам, чем пользуясь своими же собственными таблицами». И действительно, в современных вычислительных машинах существует обширная библиотека стандартных подпрограмм, с помощью которой рассчитываются функции различной степени сложности. Интересно, что термин «библиотека» для данного применения также был впервые употреблен Чарльзом Бэббиджем!

В конце 1791 года в семье Бенджамина и Элизабет Бэббидж родился мальчик. При рождении его назвали Чарльз. По достижению восьмилетия, Бэнджамин Бэббидж определил своего отпрыска в частную школу в Альфингтоне. Слабое здоровье Чарльза не позволило ему посещать обычное, для детей его возраста, учебное заведение. В качестве учителя, будущий знаменитый изобретатель получил священника, который не мог дать полное образование. Поэтому когда в 1810 году Чарльз Бэббидж поступил в колледж, он заметно отставал от своих сверстников.

В детстве, Чарльз коротал время, разбирая механические игрушки. Конечно, многие из нас любят узнать, из чего же состоит та или иная игрушка, но не многие впоследствии связывают свою жизнь с механикой. Уже в детстве Бэббидж, разбирая игрушки, пытался понять, что заставляет их двигаться. И почти всегда это ему удавалось сделать.

До поступления в колледж, Чарльз отучился в Академии в Энфилде. Благодаря обширной математической библиотеке в этом учебном заведении, Бэббидж влюбился в эту науку и впоследствии стал на практике доказывать ее важность.

Благодаря надомному обучению, а именно так учился будущий изобретатель “Аналитической машины” в школе Альфингтона и академии в Энфильде, знаний Бэббиджу явно недоставало. Его отец после академии нанял репетиторов. Один из них смог дать Чарльзу необходимые для поступления в колледж знания.

В 1810 году Бэббидж поступил в Тринити-колледж в Кембридже. Все свободное время Чарльз посвятил самостоятельному изучению математики. Он изучал труды Лагранжа, Лейбница, Эйлера, Ньютона и других “великих математических умов”. Кроме того, молодой человек имел доступ к работам математиков Парижской, Берлинской и Санкт-Петербургской академий.

Быстро обогнав своих сверстников, Бэббидж разочаровался в системе образования Кембриджа. Он, совместно со своими друзьями по колледжу Гершелем и Пикоком в 1812 основали “Аналитическое общество”. С его помощью молодые британцы смогли получить труды известных математиков того времени на английском языке. Кроме того, на собраниях общества можно было обсудить некоторые вопросы, поспорить и узнать много того, что не рассказывали преподаватели в колледже.

Неожиданно, в 1812 году Бэббидж покидает Тринити-колледж, сославшись на низкий уровень получаемых студентами знаний. Злые языки, знавшие Чарльза, говорили, что он ушел из-за того, что большинство учителей и учеников считали Бэббиджа третьим человеком в колледже после Гершеля и Пикока. Не смерившись с этим, Бэббидж отправился в колледж св. Петра, где через два года получил степень бакалавра.

В 1815 году Чарльз с молодой супругой (в год окончания колледжа св. Петра он женился на Джорджиане Витмур) перебрались в столицу Англии, где через год Бэббидж стал Членом Королевского общества Лондона.

1827 год для молодого ученого стал черным. Сначала он похоронил отца, затем жену и двоих детей. Для того, чтоб не погрязнуть в бесконечной депрессии, Бэббидж отправился в путешествие по Британским островам, после которого он занял пост профессора математических наук в Кембридже.

Малая разностная машина.

Первым изобретением, которое сделало Бэббиджа знаменитым, стала вычислительная машина, которую Чарльз назвал “разностная машина”. В 1812 году Бэббидж был занят за изучением логарифмических таблиц. Занятия его так утомили, что молодой математик заснул прямо за письменным столом. Когда его разбудил друг с вопросом: “Чем занят?”, Чарльз ответил, что хочет создать машину, которая сможет проводить сложные математические расчеты.


Семь лет ушло у математика для того, чтоб он смог сформировать идеи и принципы вычисления при помощи машины. Еще через три года в 1822 Бэббидж начал создавать свою “разностную машину”. Она состояла из множества шестеренок и рычагов. Разностная машина оперировала 18-ти разрядными числами, с точностью до восьмого знака после запятой. Она могла сосчитать значение многочленов 7-й степени. За свое изобретение Чарльз Бэббидж получил медаль Астрономического общества.

Большая разностная машина.

В 1822 году для уменьшения количества людей занятых в астрономических, навигационных и математических расчетах Бэббидж задумал создание большой разностной машины. Королевское и Астрономическое общество, после запроса изобретателя, согласилось выделить средства.

С 1822 по 1834 на изготовление большой разностной машины было выделены 17000 фунтов от государства, и еще 6000 Чарльз потратил из своего кармана. Но низкая технологическая база того времени не позволила создать машину при жизни изобретателя.

После себя Чарльз Бэббидж оставил чертежи большой разностной машины, которая должна была состоять из 25 тысяч деталей и весить 14 тонн. Швейцарский изобретатель Шойц в 1854 году создал по чертежам Бэббиджа несколько разностных машин.

Аналитическая машина — прототип первого компьютера

Бэббидж не очень расстроился неудаче с большой разностной машиной. Уже тогда он понимал, что дело будет за программируемыми машинами. В 1834 году Чарльз начал разрабатывать программируемую аналитическую машину, прообраз современной ЭВМ.

Аналитическая машина Бэббиджа должна была состоять из нескольких частей:
Склада – хранение результатов операций и значения переменных. Современная память.
Мельницы – отвечала за операции с переменными, хранения значения переменных участвующих в вычислении в данный момент. Современный процессор.
Третьего устройства (в чертежах Бэббиджа его названия не называлось) – управление последовательностью операций, перемещение и извлечение переменных в склад, вывод результатов.

Аналитическая машина Бэббиджа программировалась с помощью двух видов перфокарт: операционных карт и карт переменных.

Чарльз Бэббидж умер в 1871 году. После себя он оставил чертежи аналитической машины Первый программист - Ада Лавлейс и конспекты лекций, которые записал преподаватель туринской артиллерийской академии Луиджи Менабреа. На английский язык конспекты перевела друг и соратник Бэббиджа – Ада Лавлейс (дочь Джорджа Байрона). Она снабдила конспекты своими комментариями, которые по объему превосходили основной текст.

Ада Лавлейс в своих комментариях к лекциям Бэббиджа составила и первые инструкции по программированию аналитической машины. После этих инструкций Аду Лавлейс стали считать первым программистом.

В 1888 году сын Чарльза – Генри Бэббидж, создал по чертежам отца основной узел аналитической машины. Полностью машину Бэббиджа удалось создать только в 1906 году усилиями компании Монро.

Личность Чарльза Бэббиджа и его заслуги.

Как мы уже писали выше, технологическая база того времени значительно уступала ходу мыслей Чарльза Бэббиджа. Для изготовления своих машин изобретатель сконструировал поперечно-строгальный и токарно-револьверный станок, открыл новый метод изготовления зубчатых колес и сконструировал еще множество различных устройств.


Кроме того, ум Бэббиджа был использован в изобретении спидометра и тахометра. Так же ученый изобрел вагон-лабораторию оборудованную самописцами, приспособление для сбрасывания предметов с рельс.

Поучаствовал наш герой и в реформировании почтовой системы Англии, занимался вопросами шифрования и электромагнетизма.

Чарльз Бэббидж был очень разносторонним человеком. Среди его друзей значились Жан Фуко, Чарльз Дарвин, Юнг, Фурье и Пьер Лаплас. В истории талантливый изобретатель и математик оставил огромный след, недаром Бэббиджа называют изобретателем первого компьютера.

Чарльз Беббидж считается основателем современной вычислительной техники. В работе Чарльза Бэббиджа прослеживается два направления: разностная и аналитическая вычислительная машины. Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.

Первая небольшая модель аппарата Чарльза Бэббиджа

В 1822 году Чарльз Бэббидж создал первую небольшую модель своего аппарата, получившего название "разностная машина". Механизм разностной машины состоял из валиков и шестерней, вращаемых вручную при помощи специального рычага. Разностная машина могла управлять шестизначными числами и выражать в числах любую функцию, которая имела постоянную вторую разность. Ценность разностной машины Чарльза Бэббиджа в том, что она могла не только производить один раз заданное действие, но и осуществлять целую программу вычислений. Сам Бэббидж достаточно ясно представлял назначение своей машины. Он пропагандировал использование математических методов в различных областях науки и предсказывал при этом широкое применение вычислительных машин.

Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. Правительство Великобритании, заинтересовавшись идеей, выделило деньги на дальнейшее развитие проекта. В 1834 году Бэббидж занялся разработкой еще более сложного агрегата - аналитической машины, способной выполнять определенные действия в соответствии с инструкциями, задаваемыми оператором. Модель аналитической машины фактически можно считать прообразом современного компьютера. Главное отличие аналитической машины от разностной заключается в том, что она программируемая и может выполнять любые заданные ей вычисления.

Принцип аналитической машины Чарльза Бэббиджа

Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.

Основные части аналитической машины

Аналитическая машина состояла из следующих четырех основных частей:

  • блок хранения исходных, промежуточных данных и результатов вычислений. (состоял из набора зубчатых колес, идентифицирующих цифры подобно арифмометру);
  • блок обработки чисел из склада, названный мельницей (в современной терминологии - это арифметическое устройство);
  • блок управления последовательностью вычислений (в современной терминологии - это устройство управления УУ);
  • блок ввода исходных данных и печати результатов (в современной терминологии - это устройство ввода/вывода).

Аналитическая машина так и не была изготовлена Чарльзом Бэббджем. Кроме хронической нехватки финансовых средств, важнейшая из причин - технологическая. Тогда не умели обрабатывать металл с высокой степенью точности и с высокой производительностью - а для реализации проекта требовались тысячи одних только зубчатых колес.

Большое влияние на посмертную судьбу машины оказал генерал Бэббидж, сын изобретателя. Выйдя в отставку в 1874 году, он несколько лет посвятил изучению отцовского наследия, а в 1880 году начал работу по восстановлению Difference Engine в «железе». Работа продолжалась с переменным успехом до 1896 г. В конце концов к 1904 году был создан небольшой фрагмент машины, который печатал результаты вычислений. Кроме того, Бэббидж-младший сделал несколько мини-копий Difference Engine и разослал их по всему миру.

В 1991 году, к двухсотлетию со дня рождения ученого, сотрудники лондонского Музея науки воссоздали по его чертежам 2,6-тонную «разностную машину № 2», а в 2000 году - еще и 3,5-тонный принтер Бэббиджа. Оба устройства, изготовленные по технологиям середины XIX века, превосходно работают - в расчётах Бэббиджа было найдено всего две ошибки.