Школьная энциклопедия. Авиационные двигатели


Турбовинтовой двигатель ВК-1500 производится на объединении ОАО «Мотор Сич».
Предназначен для установки в качестве маршевого двигателя на самолеты воздушных линий пассажировместимостью до 30 чел.
Высокий уровень культуры проектирования, производства в сочетании с применением современной системы регулирования дали возможность создать двигатель с высокими эксплуатационными характеристиками, надежностью и большими ресурсами.
Вертолетный вариант двигателя ВК-1500 может устанавливаться на вертолетах среднего класса. ...


Турбовинтовой двигатель ТВД-20 разработан в Омском авиамоторном КБ на базе турбовинтового двигателя ТВД-10.
Первая серийная версия двигателя получила обозначение ТВД-20–01. Эта версия двигателя, выпускаемая с 1992 года, устанавливается на легкий многоцелевой самолет Ан-3.
Усовершенствованная версия двигателя получила обозначение ТВД-20М. Этот двигатель используется на легком самолете Аэропрогресс Т-101В с трехлопастным пропеллером АВ-17. ...

Турбовальный двигатель ТВ3–117 предназначен для установки на вертолеты. Он является одним из лучших двигателей в мире по экономичности в своем классе, что достигнуто благодаря высоким КПД основных узлов (КПД компрессора равен 86%, КПД турбины компрессора — 91%, КПД свободной турбины — 96%). Величины удельного расхода топлива и удельной массы соответствуют лучшим мировым стандартам. Двигатель имеет большие запасы газодинамической устойчивости. В конструкции двигателя применены прогрессивные технические решения: титановый ротор компрессора, сваренный из отдельных дисков электронно-лучевой сваркой; рабочие и направляющие лопатки компрессора из титанового сплава, полученные методом холодной вальцовки; контактные графитовые уплотнения масляных полостей; на новейших модификациях применяется электронно-гидромеханическая система регулирования и управления и др. Двигатель имеет большой ресурс, обладает высокой надежностью, простотой обслуживания, хорошей ремонтопригодностью. ...


В 1960 году был объявлен конкурс на создание газотурбинного двигателя мощностью 1250 л.с. для перспективного вертолёта Ми-8. Победителем конкурса проектов стало ОКБ-117 им. В.Я.Климова под руководством С.П.Изотова, которому и была поручена разработка двигателя и главного редуктора ВР-8. ТВ2–117 стал первым отечественным специализированным вертолётным двигателем. Первые образцы двигателей изготовлены летом 1962 года. Серийное производство организовано в 1965 году.
Двигатель имеет девятиступенчатый осевой компрессор, камеру сгорания кольцевого типа и двухступенчатую турбину. ...


Разработка турбовинтового двигателя ТВ-12 для бомбардировщика Ту-95 началась в ОКБ-276 под руководством Н.Д.Кузнецова в 1951 году. В декабре 1953 года Министерство авиационной промышленности утвердило общую компоновку двигателя. Летом 1954 года начались доводочные испытания ТВ-12 на летающей лаборатории Ту-4ЛЛ. В декабре новый двигатель был установлен на втором прототипе Ту-95 («95–2»). В 1955 году началось серийное производство двигателя на Куйбышевском моторостроительном заводе №24 под обозначением НК-12.
НК-12 состоит из редуктора, осевого компрессора, камеры сгорания, реактивной турбины и нерегулируемого реактивного сопла. Редуктор двигателя — дифференциальный, с передаточным отношением от ротора к воздушному винту 0,088. Редуктор передаёт мощность турбины на соосный воздушный винт (передний винт потребляет 54,4% мощности, задний — 45,6%). ...


Винтовентиляторный двигатель Д-27 разработан в Запорожском МКБ им. И.Г.Ивченко в середине 80-х годов. В разработке двигателя активное участие принимали специалисты ЦИАМ и ЦАГИ. Винтовентиляторы СВ-27 с широкохордовыми саблевидными лопастями разработатывались в НПО «Авиасила» (г. Ступино). Автоматическая система управления двигателем СУ-77 разрабатывалась в Уфимском НПО «Молния». Первые стендовые испытания проведены в 1988 году. В 1990 году двигатель испытывался на летающей лаборатории Ил-76. В 1993 году 4 двигателя Д-27 были установлены на первом прототипе транспортного самолёта Ан-70. Серийное производство предполагается на запорожском заводе «Мотор-Сiч» и Уфимском моторостроительном заводе.
Запуск двигателя автоматический с раскруткой ротора высокого давления воздушным турбостартером от ВСУ, аэродромного источника сжатого воздуха или от работающего двигателя. ...


Турбовинтовентиляторный трехвальный двигатель Д-236 разрабатывался как демонстратор технологий на Запорожском ЗМКБ "Прогресс".
Основой для двигателя послужил турбовентиляторный двигатель Д-36. Разработка двигателя была начата в 1979 году. На двигатель установлен пропеллер СВ-36. Первоначальные испытания двигателя проходили на самолете Ил-76. С 1987 года к испытаниям подключилось ОКБ им. Яковлева. Д-236 был установлен на специализированную версию самолета Як-42Е-ЛЛ вместо одного из двигателей Д-36. Первый полет самолета с такой двигательной установкой состоялся в марте 1991 года. ...


Двигатель АИ-24 конструкции А.Г. Ивченко одновальный турбовинтовой. В настоящее время на предприятиях гражданской авиации в основном эксплуатируются двигатели АИ-24 II серии.
Двигатель АИ-24 состоит из следующих узлов: дифференциального планетарного редуктора; лобового картера; 10-ступенчатого осевого компрессора; кольцевой камеры сгорания; 3-ступенчатой осевой реактивной турбины; нерегулируемого реактивного сопла.
Для обеспечения работы двигателя имеются системы: смазки и суфлирования; топливорегулирования; запуска; управления воздушным винтом; противопожарная; противообледенительная.
На самолетах Ан-24 и Ан-24Б, эксплуатируемых в условиях высоких температур наружного воздуха, силовая установка оборудуется системой впрыска воды в компрессор двигателя. ...


Двигатель турбовинтовой высотный АИ-20Д серии 5, 5Э является дальнейшим развитием широко известного базового двигателя АИ-20, используется на самолетах, выполняющих перевозки на линиях средней и дальней протяженности.
Оборудован системами: Автоматизированного запуска
Противообледенения
Противопожарной
Следящего упора для защиты по отрицательной тяге и автоматического флюгирования воздушного винта
Успешно эксплуатируются во многих странах мира (Индия, Бангладеш, Эфиопия, Перу, Никарагуа и др.) в условиях высоких температур наружного воздуха и высокогорных аэродромов. ...

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Найти

Что значит "турбовинтовой двигатель"

Энциклопедический словарь, 1998 г.

турбовинтовой двигатель

ТУРБОВИНТОВОЙ ДВИГАТЕЛЬ (ТВД) турбокомпрессорный двигатель, в котором тяга в основном создается воздушным винтом, приводимым во вращение газовой турбиной, и частично прямой реакцией потока газов, вытекающих из реактивного сопла.

Турбовинтовой двигатель

Ввиду того, что как лопасти вентилятора, так и лопасти винта для эффективного функционирования должны работать на дозвуковых скоростях, вентилятор в кольцевом обтекателе является более эффективным на больших скоростях.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным . Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя - одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Полезные статьи по теме.

Двигатель турбовинтовой похож на поршневый: и тот, и другой имеют воздушный винт. Но во всем остальном они разные. Рассмотрим, что собой представляет этот агрегат, как работает, каковы его плюсы и минусы.

Общая характеристика

Двигатель турбовинтовой принадлежит к классу газотурбинных, которые разрабатывались как универсальные преобразователи энергии и стали широко использоваться в авиации. Они состоят из где расширенные газы вращают турбину и образуют крутящий момент, а к ее валу прикрепляют другие агрегаты. Двигатель турбовинтовой снабжается воздушным винтом.

Он представляет собой нечто среднее между поршневыми и турбореактивными агрегатами. Сначала в самолеты устанавливали состоящие из цилиндров в форме звезды с расположенным внутри валом. Но из-за того, что они имели слишком большие габариты и вес, а также низкую возможность скорости, их перестали использовать, отдав предпочтение появившимся турбореактивным установкам. Но и эти двигатели не были лишены недостатков. Они могли развивать сверхзвуковую скорость, но потребляли очень много топлива. Поэтому их эксплуатация обходилась слишком дорого для пассажирских перевозок.

Двигатель турбовинтовой должен был справиться с подобным недостатком. И эта задача была решена. Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого

Двигатели были изобретены и сооружены еще в тридцатых годах прошлого века при Советском Союзе, а два десятилетия спустя начали их массовый выпуск. Мощность варьировалась от 1880 до 11000 кВт. Длительный период их применяли в военной и гражданской авиации. Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.

Устройство турбовинтового двигателя и принцип его работы

Конструкция мотора очень проста. В него входят:

  • редуктор;
  • воздушный винт;
  • камера сгорания;
  • компрессор;
  • сопло.

Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее, а она, в свою очередь, вращает компрессор и винт. Нерастраченная энергия выходит через сопло, создавая реактивную тягу. Так как величина ее не является существенной (всего десять процентов), не считается турбореактивным турбовинтовой двигатель.

Принцип работы и конструкция, впрочем, схожи с ним, но энергия здесь не полностью выходит через сопло, создавая реактивную тягу, а лишь частично, так как полезная энергия еще и вращает винт.

Рабочий вал

Бывают двигатели с одним или двумя валами. В одновальном варианте на одном валу находятся и компрессор, и турбина, и винт. В двухвальном — на одном из них установлены турбина и компрессор, а на другом — винт через редуктор. Здесь же имеются две турбины, связанные друг с другом газодинамическим способом. Одна из них предназначена для винта, а другая — для компрессора. Такой вариант наиболее распространен, так как энергия может применяться без запуска винтов. А это особенно удобно, когда самолет находится на земле.

Компрессор

Эта деталь состоит из двух-шести ступеней, позволяющих воспринимать существенные перепады температуры и давления, а также снижать обороты. Благодаря такой конструкции получается понизить вес и габариты, что является очень важным для авиационных двигателей. В компрессор входят рабочие колеса и направляющий аппарат. На последнем может быть предусмотрена или не предусмотрена регуляция.

Воздушный винт

Благодаря этой детали образуется тяга, но скорость является ограниченной. Лучшим показателем считается уровень от 750 до 1500 оборотов в минуту, так как при увеличении коэффициент полезного действия начнет падать, и винт вместо разгона будет превращаться в тормоз. Явление называется «эффектом запирания». Оно вызвано лопастями винта, которые на высоких оборотах при вращении, превышающей начинают функционировать некорректно. Тот же самый эффект будет наблюдаться при увеличении их диаметра.

Турбина

Турбина способна развить скорость до двадцати тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор, сокращающий скорость и увеличивающий крутящий момент. Редукторы могут быть разными, но главная их задача вне зависимости от вида — снижать скорость и повышать момент.

Именно эта характеристика ограничивает использование турбовинтового двигателя в военных самолетах. Однако разработки по созданию сверхзвукового двигателя не прекращаются, хоть пока и не являются успешными. Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.

В качестве примера можно рассмотреть двигатель Д-27 (турбовинтовентиляторный), имеющий два винтовых вентилятора, прикрепленных на свободной турбине редуктором. Это единственная модель данной конструкции, используемая в гражданской авиации. Но его успешное применение считают большим скачком по улучшению эксплуатационных качеств рассматриваемого мотора.

Преимущества и недостатки

Выделим минусы и плюсы, которыми характеризуется работа турбовинтового двигателя. Преимуществами являются:

  • малый вес по сравнению с поршневыми агрегатами;
  • экономичность по сравнению с турбореактивными моторами (благодаря воздушному винту коэффициент полезного действия достигает восьмидесяти шести процентов).

Однако, несмотря на такие неоспоримые достоинства, реактивные двигатели в ряде случаев являются более предпочтительным вариантом. Скоростной предел турбовинтового мотора составляет семьсот пятьдесят километров в час. Однако для современной авиации этого очень мало. Кроме того, шум образуется очень высокий, превышающий допустимые значения Международной организации гражданской авиации.

Поэтому производство турбовинтовых двигателей в России ограниченно. В основном их устанавливают в самолеты, которые летают на большие расстояния и с небольшой скоростью. Тогда применение оправданно.

Однако в военной авиации, где главными характеристиками, которыми должны обладать самолеты, являются высокая маневренность и бесшумная работа, а не экономичность, эти двигатели не отвечают необходимым требованиям и здесь используются турбореактивные агрегаты.

В то же время постоянно ведутся разработки по созданию сверхзвуковых винтов, чтобы преодолеть «эффект запирания» и выйти на новый уровень. Возможно, когда изобретение станет реальностью, от реактивных двигателей откажутся в пользу турбовинтовых и в военных самолетах. Но в настоящее время их можно назвать лишь «рабочими лошадками», не самыми мощными, зато стабильно функционирующими.

Турбовинтовой двигатель (ТВД) - авиационный газотурбинный двигатель, создающий основную силу тяги винтом, а дополнительную - струёй газов, вытекающих из реактивного сопла.

Необходимость в переходе от поршневых установок к турбовинтовым возникла при проектировании и эксплуатации с большой грузоподъёмностью и дальностью полёта. Летательные аппараты обладающие большой, принципиальная схема турбовинтового двигателя грузоподъемностью должны иметь двигатели способные развивать необходимую тягу при минимальном удельном весе. По тому критерию подходят турбореактивные установки. Но они крайне неэффективны на малых скоростях. Решением проблемы стало комбинирование технологий винтомоторных двигателей с реактивной тепловой машиной.

Конструктивно турбовинтовой двигатель схож с турбореактивным, но у ТВД имеется винт, создающий основную часть тяги, и редуктор, связывающий винт с валом тепловой машины. Редуктор используется для уменьшения оборотов винта по сравнению с оборотами газовой турбины. Рабочие обороты турбины колеблются между 18 и 21 тысячами об/мин. При таких оборотах КПД винта падает почти до нуля, тогда как максимальный КПД винт достигается при оборотах от 750 до 1500 об/мин.

Существуют варианты ТВД с двумя винтами, направленными в противоположные стороны. Подобный тип двигателей применяется на летательных аппаратах, требующих большой мощности двигателей.

Тяга в турбовинтовых установках, преимущественно (до 90%), создаётся винтом, и лишь малая доля струёй отработанных газов

Основные преимущества ТВД перед другими газотурбинными двигателями состоят в лучших тяговых характеристиках на взлёте и в большей экономичности на скоростях полёта до 800 км/ч.

Реактивные двигатели


Реактивный двигатель -- двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела. По закону сохранения импульса, летательный аппарат получает такой же импульс, какой имеет рабочее тело при выходе из двигателя.

Реактивный двигатель сочетает в себе двигатель с движителем, то есть он создаёт тяговое усилие только за счёт Первый отечественный турбореактивный двигатель ТР-1

взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов.

Все разновидности реактивных двигателей объединяет наличие двух основных элементов конструкции: камеры сгорания и сопла. Камера сгорания - объём, образованный совокупностью деталей двигателя, в котором происходит сжигание горючей смеси. После отработки горючего, Продукты сгорания устремляются в реактивное сопло, в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.

Дальнейшая классификация будет зависеть от наличия в двигателе компрессора - узла, предназначенного для нагнетания рабочего тела в камеру сгорания. Наиболее значимыми представителями компрессорных двигателей являются: турбореактивные двигатели и двухконтурные турбовинтовые двигатели. Группа бескомпрессорных состоит из прямоточных и пульсирующих реактивных двигателей.