Средняя сила сопротивления движению. Сила сопротивления

Каждый велосипедист, мотоциклист, шофер, машинист, летчик или капитан корабля знает, что у его машины есть предельная скорость; превысить которую не удается никакими усилиями. Можно сколько угодно нажимать на педаль газа, но «выжать» из машины лишний километр в час невозможно. Вся развиваемая скорость идет на преодоление сил сопротивления движению .

Преодоление различного трения

Например, автомобиль имеет двигатель мощностью в пятьдесят лошадиных сил. Когда водитель нажимает газ до отказа, коленчатый вал двигателя начинает делать три тысячи шестьсот оборотов в минуту. Поршни как сумасшедшие мечутся вверх и вниз, подскакивают клапаны, вертятся шестеренки, а автомобиль движется хотя и очень быстро, но совершенно равномерно, и вся сила тяги двигателя уходит на преодоление сил сопротивления движению, в частности преодоление различного трения . Вот, например, как распределяется сила тяги двигателя между его «противниками» - разными видами при скорости автомобиля сто километров в час:

  • на преодоление трения в подшипниках и между шестеренками расходуется около шестнадцати процентов силы тяги мотора,
  • на преодоление трения качения колес по дороге - примерно двадцать четыре процента,
  • на преодоление сопротивления воздуха расходуется шестьдесят процентов силы тяги автомобиля.

Сопротивление воздуха

При рассмотрении сил сопротивления движению, таких как:

  • трение скольжения с увеличением скорости немного уменьшается,
  • трение качения изменяется очень незначительно,
  • сопротивление воздуха , совершенно незаметное при медленном движении, становится грозной тормозящей силой, когда скорость возрастает.

Воздух оказывается главным врагом быстрого движения . Поэтому кузовам автомобилей, тепловозам, палубным надстройкам пароходов придают округленную, обтекаемую форму, убирают все выступающие части, стараются сделать так, чтобы воздух мог их плавно обегать. Когда строят гоночные машины и хотят добиться от них наивысшей скорости, то для кузова автомобиля заимствуют форму у рыбьего туловища, а на такую скоростную машину ставят двигатель мощностью несколько тысяч лошадиных сил.

Но что бы ни делали изобретатели, как бы ни улучшали обтекаемость кузова, всегда за всяким движением, как тень, следуют силы трения и сопротивления среды. И если они даже не увеличиваются, остаются постоянными, все равно машина будет иметь предел скорости. Объясняется это тем, что мощность машины - произведение силы тяги на ее скорость .

Но раз движение равномерное - сила тяги целиком уходит на преодоление различных сил сопротивления. Если добиться уменьшения этих сил, то при данной мощности машина сможет развить большую скорость. А так как основным врагом движения при больших скоростях является сопротивление воздуха, то для борьбы с ним конструкторам и приходится так изощряться.

Сопротивлением воздуха заинтересовались артиллеристы

Сопротивлением воздуха прежде всего заинтересовались артиллеристы . Они старались понять, почему пушечные снаряды не так далеко летят, как им хотелось бы. Расчеты показали, что, если бы на Земле не было воздуха, снаряд семидесятишестимиллиметровой пушки пролетел бы не менее двадцати трех с половиной километров , а в действительности он падает всего лишь в семи километрах от пушки . Из-за сопротивления воздуха теряется шестнадцать с половиной километров дальности . Обидно, но ничего не поделаешь! Артиллеристы улучшали пушки и снаряды, руководствуясь главным образом догадкой и смекалкой.

Что происходит со снарядом в воздухе, сначала было неизвестно. Хотелось бы посмотреть на летящий снаряд и увидеть, как он рассекает воздух, но снаряд летит очень быстро, глаз не может уловить его движения, а воздух и подавно невидим. Желание казалось несбыточным, но выручила фотография. При свете электрической искры удалось заснять летящую пулю. Искра сверкнула и на мгновение осветила пулю, пролетавшую перед объективом фотоаппарата. Ее блеска оказалось достаточно, чтобы получить моментальный снимок не только пули, но и воздуха, рассекаемого ею.

На фотографии были видны темные полосы, расходящиеся от пули в стороны. Благодаря фотоснимкам стало ясно, что происходит, когда снаряд летит в воздухе. При медленном движении предмета частицы воздуха спокойно расступаются перед ним и почти не мешают ему, но при быстром - картина меняется, частицы воздуха уже не успевают разлетаться в стороны.

Снаряд летит и, как поршень насоса, гонит впереди себя воздух и уплотняет его. Чем выше скорость, тем сильнее сжатие и уплотнение. Для того чтобы снаряд двигался быстрее, лучше пробивал уплотненный воздух, его головную часть делают заостренной.

Полоса завихренного воздуха

На фотоснимке летящей пули было видно, что-у нее позади возникает полоса завихренного воздуха . На образование вихрей тоже тратится часть энергии пули или снаряда. Поэтому у снарядов и пуль стали делать донную часть скошенной, это уменьшило силу сопротивления движению в воздухе. Благодаря скошенному дну дальность полета снаряда семидесятишестимиллиметровой пушки достигла одиннадцати - двенадцати километров .

Трение частиц воздуха

При полете в воздухе на скорости движения сказывается также трение частиц воздуха о стенки летящего предмета. Это трение невелико, но оно все же существует и нагревает поверхность. Поэтому приходится красить самолеты глянцевитой краской и покрывать их особым авиационным лаком. Таким образом, силы сопротивления движению в воздухе всем движущимся предметам возникают вследствие трех различных явлений:

  • уплотнения воздуха впереди,
  • образования завихрений позади,
  • небольшого трения воздуха о боковую поверхность предмета.

Сопротивление движению со стороны воды

Предметы, движущиеся в воде - рыбы, подводные лодки, самоходные мины - торпеды и проч., - встречают большое сопротивление движению со стороны воды . С увеличением скорости силы сопротивления воды растут еще быстрее, чем в воздухе. Поэтому и значение обтекаемой формы возрастает. Достаточно взглянуть на форму тела щуки. Она должна гоняться за мелкими рыбешками, поэтому для нее важно, чтобы вода оказывала минимальное сопротивление ее движению.

Форму рыбы придают самоходным торпедам, которые должны быстро поражать неприятельские суда, не давая им возможности уклониться от удара. Когда моторная лодка мчится по водной глади или торпедные катера идут в атаку, видно, как острый нос корабля или лодки режет волны, обращая их в белоснежную пену, а за кормой кипит бурун и остается полоса вспененной воды.

Сопротивление воды напоминает сопротивление воздуха - вправо и влево от корабля бегут волны, а позади образуются завихрения - пенистые буруны; сказывается также и трение между водой и погруженной частью корабля. Разница между движением в воздухе и движением в воде состоит только в том, что вода - жидкость несжимаемая и перед кораблем не возникает уплотненной «подушки», которую приходится пробивать. Зато плотность воды почти в тысячу раз больше плотности воздуха .

Вязкость воды тоже значительна. Вода не так-то уж охотно и легко расступается перед кораблем, поэтому сопротивление движению, которое она оказывает предметам, весьма велико. Попробуйте, например, нырнув под воду, похлопать там в ладоши. Это не удастся - вода не позволит. Скорости морских кораблей значительно уступают скоростям воздушных кораблей. Наиболее быстроходные из морских судов - торпедные катера развивают скорость в пятьдесят узлов, а глиссеры, скользящие по поверхности воды, - до ста двадцати узлов. (Узел - морская мера скорости; один узел составляет 1852 метра в час.)


Для расчета используется постоянная g, которая равна 9,8 м/с2. 3 Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α). 4 Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую - F=v2*β.

Закон стокса

Математическое изучение движения тел в вязкой жидкости сопряжено со столь большими трудностями, что до сих пор такому изучению оказались доступными только предельные случаи, а именно, случай очень большой вязкости, т.е. очень малого числа Рейнольдса, и случай очень малой вязкости, т.е. очень большого числа Рейнольдса. Если в потоке преобладают силы вязкости, что имеет место, с одной стороны, в очень вязких жидкостях (например, в моторном масле), а с другой стороны, также в обычных жидкостях при весьма малых размерах, определяющих движение, то можно пренебречь силами инерции по сравнению с силами вязкости и считать, что перепад давления и силы трения, приложенные к любой части жидкости, уравновешивают друг друга.

Краткая формула сопротивления воды

Число Рейнольдса имеет огромное значение при моделировании реальных процессов в меньших (лабораторных) масштабах. Если для двух течений разных размеров числа Рейнольдса одинаковы, то такие течения подобны, и возникающие в них явления могут быть получены одно из другого простым изменением масштаба измерения координат и скоростей. Поэтому, например, на модели самолета или автомобиля в аэродинамической трубе можно предугадать и изучить процессы, которые возникнут в процессе реальной эксплуатации.

Важно

Коэффициент сопротивления. Итак, коэффициент сопротивления в формуле для силы сопротивления зависит от числа Рейнольдса: Эта зависимость имеет сложный характер, показанный (для шара) на рис. 9.16. Теоретически получить эту кривую трудно, и обычно используют зависимости, экспериментально измеренные для данного тела. Однако возможна качественная ее интерпретация. Рис. 9.16.

В частности, вискозиметры Гепплера c падающим шариком, производимые фирмой Gebruder HAAKE GmbH, предназначены для точных измерений вязкости прозрачных ньютоновских жидкостей и газов в следующих отраслях: химия (растворители, смолы и пр.); фармацевтическая пром-ть (глицерин, и т.п.); пищевая пром-ть (желатин, сироп, пивное сусло и пр.); нефтехимия (масла, жидкие углеводороды). Образец исследуемой жидкости набирается в измерительный шприц с шариком. После временной выдержки с целью выравнивания температуры (5 мин) магнит поднимает шарик в верхнюю стартовую позицию.
Затем шарик освобождается и скатывается по стенке шприца, наклоненного для исключения поперечного биения на 15°. Время падения, в соответствии с формулой Стокса, пропорционально вязкости жидкости. Время прохождения шариком определенной дистанции измеряется автоматически и пересчитывается в единицы вязкости.

Как найти силу сопротивления

Как видно из формулы, величина полного гидродинамического сопротивления прямо пропорциональна величине миделевого сечения. При плавании человека величина миделевого сечения постоянно изменяется. Наименьшая проекция будет в том случае, если тело занимает в воде горизонтальное положение.

Внимание

Величину миделевого сечения необходимо учитывать не только при выборе рационального положения тела, но и при выполнении рабочих и подготовительных движений. Пловец продвигается вперед, опираясь конечностями о воду и отталкиваясь от нее. Отталкивания будут тем более эффективными, чем больше они будут вызывать сопротивление своему движению, которое зависит от величины миделевого сечения.


Практически это достигается тем, что ладони во время гребка располагаются по возможности перпендикулярно направлению движения.

§ 8.5 движение тел в вязкой среде. закон стокса.

Разумеется, уравнения движения тела в жидкости невозможно даже начать решать, пока нам ничего неизвестно о модулесилы сопротивления. Величина этой силы существенно зависит от характера обтекания тела встречным потоком газа (или жидкости). При малых скоростях этот поток является ламинарным (то есть слоистым).

Инфо

Его можно представить себе как относительное движение не смешивающихся между собой слоев среды. Ламинарное течение жидкости демонстрируется на опыте, показанном на рис. 13. Как уже отмечалось в главе 9.3, при относительном движении слоёв жидкости или газа между этими слоями возникают силы сопротивления движению, которые называются силами внутреннего трения.


Эти силы обусловлены особым свойством текучих тел - вязкостью, которая характеризуется численно коэффициентом вязкости.

9.4. движение тел в среде с сопротивлением

В современной гидромеханике аналитическое выражение для определения силы полного сопротивления движению тела в воздушной или водной среде, отвечающее принципам гидродинамического подобия, имеет вид (8.54) где R – полная сила сопротивления воды движению тела; ζ – безразмерный коэффициент сопротивления; ρ – плотность среды; Ω – характерная площадь тела; υ – относительная скорость движения тела. Требуется установить зависимость для определения силы сопротивления движению тела, используя метод показателей. 1. Записываем функциональную зависимость для определения силы сопротивления R = f (ρ, l, υ, μ, g) (8.55) где l – длина тела; μ – динамическая вязкость; g – ускорение свободного падения. Размерность входящих в зависимость (8.55) параметров является сочетанием трех основных единиц измерения [ М ],[ L ] и[Т]. 2.

Сила сопротивления жидкости формула

Таким параметром может служить отношение силы лобового сопротивления к силе внутреннего трения. Подставляя в формулу для силы сопротивления выражение для площади поперечного сечения шара, убеждаемся, что величина силы лобового сопротивления с точностью до несущественных сейчас числовых факторов определяется выражением а величина силы внутреннего трения - выражением Отношение этих двух выражений и есть число Рейнольдса: Если речь идет не о движении шара, то под D понимается характерный размер системы (скажем, диаметр трубы в задаче о течении жидкости). По самому смыслу числа Рейнольдса ясно, что при его малых значениях доминируют силы внутреннего трения: вязкость велика и мы имеем дело с ламинарным потоком. При больших значениях числа Рейнольдса, наоборот, доминируют силы динамического лобового сопротивления и поток становится турбулентным.

Сила сопротивления воды формула

Теоретический расчет внутреннего трения для движения шарика диаметром D приводит к формуле Стокса: Подставляя формулу Стокса в выражение для силы сопротивления при установившемся движении, находим выражение для установившейся скорости падения шарика в среде: Видно, что чем легче тело, тем меньше скорость его падения в атмосфере. Полученное уравнение объясняет нам, почему пушинка падает медленнее,чем стальной шарик. При решении реальных задач, например, вычислении установившейся скорости падения парашютиста при затяжном прыжке, не следует забывать, что сила трения пропорциональна скорости тела лишь для относительно медленного ламинарного встречного потока воздуха.

При увеличении скорости тела вокруг него возникают воздушные вихри, слои перемешиваются, движение в какой-то момент становится турбулентным, и сила сопротивления резко возрастает.
Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела. 5 Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные.
Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение.
Однако предположение о полном увлечении частиц среды движущимся телом оказывается слишком сильным. В реальности любое тело так или иначе обтекается потоком, что уменьшает силу сопротивления. Принято использовать так называемый коэффициент сопротивления C, записывая силу лобового сопротивления в виде: При турбулентном потоке в некотором интервале скоростей C не зависит от скорости движения тела, но зависит от его формы: скажем, для диска он равен единице, а для шара примерно 0,5. Подставляя формулу для силы лобового сопротивления в выражение для силы сопротивления при установившемся движении, приходим к иному, нежели ранее полученная формула, выражению для установившейся скорости падения шара (при C = 0,5): Применяя найденную формулу к движению парашютиста весом 100 кг с поперечным размером парашюта 10 м, находим что соответствует скорости приземления при прыжке без парашюта с высоты 2 м.

Сила сопротивления единицы измерения

Распределение скоростей вблизи стенки На рис. 92 показано распределение скоростей в пограничном слое. Если толщина пограничного слоя представляет собой величину порядкаа размер тела в направлении течения - величину порядка I, то сила трения на единицу объема, равная, согласно сказанному в конце § 1, (направление у нормально к поверхности тела), будет иметь порядока сила инерции на единицу объема, как и раньше, - порядок Так как в пограничном слое обе эти силы представляют собой величины одного и того же порядка, то величины ипропорциональны друг другу, т. е. (знак ~ означает «пропорционально»), откуда получается формула: дающая оценку для толщины пограничного слоя. Рис. 93. Течение вдоль пластинки Этот же результат можно получить, применяя теорему о количестве движения к потоку вдоль плоской пластинки.

Силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией .

Поток и форма
препятствия
Сопротивление
формы
Влияние

вязкости на трение

~0,03 ~100 %
~0,01-0,1 ~90 %
~0,3 ~10 %
1,17 ~5 %
Полусфера 1,42 ~10

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

X 0 = C x 0 ρ V 2 2 S {\displaystyle X_{0}=C_{x0}{\frac {\rho V^{2}}{2}}S} C x 0 {\displaystyle C_{x0}} - безразмерный аэродинамический коэффициент сопротивления , получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) - площадь поперечного сечения;
  • для крыльев и оперения - площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов - либо площадь лопастей, либо ометаемая площадь винта;
  • для подводных объектов обтекаемой формы - площадь смачиваемой поверхности;
  • для продолговатых тел вращения , ориентированных вдоль потока (фюзеляж, оболочка дирижабля) - приведённая волюметрическая площадь, равная V 2/3 , где V - объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости ( P = X 0 ⋅ V = C x 0 ρ V 3 2 S {\displaystyle P=X_{0}\cdot V=C_{x0}{\dfrac {\rho V^{3}}{2}}S} ).

Индуктивное сопротивление в аэродинамике

Индуктивное сопротивление (англ. lift-induced drag ) - это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение, во-первых, сопровождается образованием подъёмной силы, а во-вторых - приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления. На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы (так, в случае отрицательной работы подъёмной силы направление вектора индуктивного сопротивления противоположно вектору силы, обусловленной тангенсальным трением), но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей - вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ {\displaystyle \lambda } , плотности среды ρ и квадрату скорости V:

X i = C x i ρ V 2 2 S = C y 2 π λ ρ V 2 2 S = 1 π λ Y 2 ρ V 2 2 S {\displaystyle X_{i}=C_{xi}{\frac {\rho V^{2}}{2}}S={\frac {C_{y}^{2}}{\pi \lambda }}{\frac {\rho V^{2}}{2}}S={\frac {1}{\pi \lambda }}{\frac {Y^{2}}{{\frac {\rho V^{2}}{2}}S}}}

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X 0 + X i {\displaystyle X=X_{0}+X_{i}}

Так как сопротивление при нулевой подъёмной силе пропорционально квадрату скорости, а индуктивное - обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости X 0 {\displaystyle X_{0}} растёт, а X i {\displaystyle X_{i}} - падает, и график зависимости суммарного сопротивления X {\displaystyle X} от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X 0 {\displaystyle X_{0}} и X i {\displaystyle X_{i}} , при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит, наивысшим

Коэффициент сопротивления дает возможность учитывать потери энергии при движении тела. Чаще всего рассматривают два типа движения: движение по поверхности и движение в веществе (жидкости или газе). Если рассматривают движение по опоре, то обычно говорят о коэффициенте трения. В том случае, если рассматривают движение тела в жидкости или газе, то имеют в виду коэффициент сопротивления формы.

Определение коэффициента сопротивления (трения) скольжения

ОПРЕДЕЛЕНИЕ

Коэффициентом сопротивления (трения) называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Обычно данный коэффициент обозначают греческой буквой . В таком случае коэффициент трения определим как:

Речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Определение коэффициент сопротивления (трения) качения

ОПРЕДЕЛЕНИЕ

Коэффициент сопротивления (трения) качения обозначают чаще буквой . Его можно определить с помощью отношения момента силы трения качения () к силе с которой тело прижимается к опоре (N):

Данный коэффициент, имеет размерность длины. Основной его единицей в системе СИ будет метр.

Определение коэффициента сопротивления формы

ОПРЕДЕЛЕНИЕ

Коэффициент сопротивления формы физическая величина, которая определяет реакцию вещества на перемещение тела внутри нее. Можно сказать иначе: это физическая величина, которая определяет реакцию тела на движение в веществе. Данный коэффициент определяется эмпирически, его определением служит формула:

где — сила сопротивления, — плотность вещества, — скорость течения вещества (или скорость движения тела в веществе), площадь проекции тела на плоскость перпендикулярную к направлению движения (перпендикулярная потоку).

Иногда, если рассматривают движение вытянутого тела, то считают:

где V — объем тела.

Рассматриваемый коэффициент сопротивления является безразмерной величиной. Он не учитывает эффектов на поверхности тел, поэтому формула (3) может стать не пригодна, если рассматривается вещество, которое имеет большую вязкость. Коэффициент сопротивления (C) является постоянной величиной пока число Рейнольдса (Re) является неизменным. В общем случае .

Если тело имеет острые ребра, то эмпирически получено, что для таких тел коэффициент сопротивления остается постоянным в широкой области чисел Рейнольдса. Так опытным путем получено, что для круглых пластинок поставленных поперек воздушного потока, при значения коэффициента сопротивления находятся в пределах от 1,1 до 1,12. При уменьшении числа Рейнольдса () закон сопротивления переходит в закон Стокса, который для круглых пластинок имеет вид:

Сопротивление шаров было исследовано для широкой области чисел Рейнольдса до Для получили:

В справочниках представлены коэффициенты сопротивления для круглых цилиндров, шаров и круглых пластинок в зависимости от числа Рейнольдса.

В авиационной технике задача о нахождении формы тела с минимальным сопротивлением имеет особое значение.

Примеры решения задач

ПРИМЕР 1

Задание Максимальная скорость автомобиля на горизонтальном участке дороги равна при максимальной мощности его равной P. Коэффициент лобового сопротивления автомобиля C, а наибольшая площадь сечения в направлении, перпендикулярном скорости S. Автомобиль подвергся реконструкции, наибольшую площадь сечения в направлении, перпендикулярном скорости уменьшили до величины , оставив коэффициент сопротивления без изменения. Считайте силу трения о поверхность дороги неизменной, найдите какова максимальная мощность автомобиля, если его скорость на горизонтальном участке дороги стала равна . Плотность воздуха равна .
Решение Сделаем рисунок.

Мощность автомобиля определим как:

где — сила тяги автомобиля.

Считая, что автомобиль на горизонтальном участке дороги движется с постоянной скоростью, запишем второй закон Ньютона в виде:

В проекции на ось X (рис.1), имеем:

Силу сопротивления, которую испытывает автомобиль, двигаясь в воздухе, выразим как:

Тогда мощность автомобиля можно записать:

Выразим из (1.5) силу трения автомобиля о дорогу:

Запишем выражение для мощности, но с изменёнными по условию задачи параметрами автомобиля:

Учтем, что сила трения автомобиля о дорогу не изменилась, и примем во внимание выражение (1.6):

Ответ

ПРИМЕР 2

Задание Какова максимальная скорость шарика, который свободно падает в воздухе, если известны: плотность шарика (), плотность воздуха (), масса шарика (), коэффициент сопротивления C?
Решение Сделаем рисунок.

Запишем второй закон Ньютона для свободного падения шарика:

ВВЕДЕНИЕ

В транспортном потоке автомобиль движется в трех основных режимах: разгон, движение с постоянной скоростью и выбег. Способность автомобиля быстро увеличивать скорость характеризуются его динамическими свойствами.

Расчет скорости и пути автомобиля необходим в следующих случаях: проектирование системы управления движением на магистрали, расследование ДТП с обгоном транспортных средств, определение размеров площадки для контроля тормозных свойств автомобиля и др.

Движение автомобиля описывается дифференциальными уравнениями. Чтобы рассчитать скорость и путь автомобиля выполняют интегрирование этих уравнений. Расчет вручную, на калькуляторе, движения автомобиля занимает много времени, а погрешность расчета составляет 5…15%.

При движении автомобиль перемещается в продольной и поперечной плоскости дороги, кузов и неподрессоренные массы совершают колебания на подвеске. В разработанной программе учитывается движение только в продольной плоскости дороги. Колебания масс не учитываются. Последнее упрощение связано с тем, что в литературе отсутствуют числовые данные по моментам инерции, жесткостям и демпфированию подвесок для автомобилей различных марок. В тоже время учет колебаний позволяет повысить точность расчета лишь на 0,5…1%.

В программе рассчитываются три основных варианта движения: трогание с места, разгон движущегося автомобиля и выбег. Частным случаем второго варианта является движение автомобиля с постоянной скоростью.

Интегрирование дифференциальных уравнений выполняется по методу Эйлера по времени, с постоянным шагом 0,001 c. При расчете малых величин применяются числа двойной точности. Все расчеты выполняются в системе единиц измерения СИ.

Работа с программой организована в режиме диалога с персональным компьютером. Пользователь вводит параметры автомобиля, задает начальные условия, вариант движения и конец участка. Результаты расчета выводятся на экран дисплея и в файл. Пользователь может контролировать изменение всех параметров автомобиля по времени с помощью графиков. Файлы с результатами расчета можно использовать для построения графиков по программе Excel.

Силы сопротивления движению

На автомобиль действуют силы сопротивления движению и тяговая сила. Силы сопротивления движению зависят от условий движения и параметров автомобиля. Тяговая сила зависит от мощности двигателя, режима его работы и параметров трансмиссии.

Сила сопротивления качению

Сила Pf сопротивления качению автомобиля складывается из сил сопротивления качению его колес:

где f - коэффициент сопротивления качению (безразмерный); G - вес автомобиля в Н.

Коэффициент сопротивления качению зависит от скорости V движения автомобиля:

f = f0 (1 + k V2), (2)

где f0 - коэффициент сопротивления качению при низкой скорости. Значение f0 указывается в задании на курсовой проект. Обычно принимают коэффициент f0 = 0,015. На чистой, ровной, сухой дороге и при применении шин с низким сопротивлением качению f0 снижается до 0,01. На дороге в неудовлетворительном состоянии f0 увеличивается до 0,03. Коэффициент k отражает влияние скорости V автомобиля на сопротивление качению. Значение k обычно принимают 0,000144 с2/м2. При скорости автомобиля менее 22…25 м/с (80…90 км/ч) влиянием скорости можно пренебречь.

Сила сопротивления подъему

Сила сопротивления подъему зависит от угла подъема дороги i, рад. Обычно угол i имеет небольшую величину, и значение i называют коэффициентом сопротивления подъему. Силу Pi - сопротивления подъему вычисляют по формуле:

Сила сопротивления воздуха

Сила сопротивления воздуха зависит от обтекаемости автомобиля, лобовой его площади и скорости:

PW = k F V2, (4)

где k - коэффициент обтекаемости в Нс2/м4; F - лобовая площадь автомобиля (площадь Миделя) в м2; V - скорость автомобиля в м/с.

Произведение k F называют фактором обтекаемости W. Значения коэффициентов обтекаемости и площади автомобилей различного типа приведены в табл. 1.

Таблица 1 Значения коэффициента обтекаемости k, площади F и фактора обтекаемости для автомобилей различного типа

Тип автомобиля

Легковой, с закрытым кузовом

Легковой, с открытым кузовом

Грузовой

Гоночный