Физика и правила дорожного движения. Физика и правила дорожного движения или о том

Физика и безопасность дорожного движения

Знание ПДД - это знание законов физики

Добрый день, ребята! ЗАПОМНИТЕ! Пешеходу следует помнить о том, что при переходе дороги могут возникнуть помехи его движению: он может поскользнуться, споткнуться, столкнуться со встречным пешеходом и т.п., следовательно, в этой ситуации безопаснее пропустить автомобиль. Скажите, о чем говорил Антон Павлович Чехов в этом высказывании?

Каждый из нас является участником дорожного движения. Законы движения надо знать и помнить всем: и водителям, и пешеходам. Сегодня объектом нашего исследования будет дорога и все участники движения. Мы постараемся рассмотреть правила дорожного движения с позиции законов физики.


  1. Везде и всюду правила,
    Их надо знать всегда.
    Без них не выйдут в плаванье
    Из гавани суда.
    Выходят в рейс по правилам
    Полярник и пилот.
    Свои имеют правила
    Шофер и пешеход.

2. По городу, по улице
Не ходят просто так.
Когда не знаешь правила,
Легко попасть впросак.
Все время будь внимательным
И помни наперед:
Свои имеют правила
Шофер и пешеход.

Помогать нам будут: автоинспектор дорожно-патрульной службы дядя Стёпа …

Он главный на дороге.
Он важный, как директор.
И смотрит взглядом строгим
На всех автоинспектор.

Чтоб правила движения
Шоферы соблюдали,
Стоит он днем и ночью
У края магистрали.

Машины непослушные
Он в ровный ряд построит,
И знают нарушители,
Что спорить с ним не стоит.
Следит он за порядком
Обгона, поворота.
Сигналы светофора
Не пропустил ли кто-то?
Он лихача накажет,
Чтоб ездил тот потише,
Не подвергал опасности
Девчонок и мальчишек.


Второй наш помощник высокоинтеллектуальный человечек Знайка из сказки Носова «Незнайка с нашего двора»

Песня «Гимн Знайки и его друзей»



Чтоб не лить напрасных слез и не ведать бед,
Надо на любой вопрос точный знать ответ.

Припев:
Над тайнами природы
Откроем мы завесу
Посредством приобщения
К научному прогрессу.

Чтобы в случае чего в панику не впасть,
Надо всем до одного заниматься всласть,
Чтобы воды бурных рек повернули вспять,
Надо в наш научный век все на свете знать.

Припев:
Над тайнами природы
Откроем мы завесу
Посредством приобщения
К научному прогрессу.

Что такое тормозной путь? (Тормозной путь автомобиля – расстояние, которое проходит автомобиль с момента начала торможения до полной остановки.)

Почему нельзя переходить дорогу перед близко идущим транспортом? (Физическое явление – инерция не даёт транспортному средству сразу остановиться)

Тормозной путь зависит от времени срабатывания тормозной системы (0,5 - 1,5 с), от начальной скорости движения, от максимального замедления, которое может развивать автомобиль (от состояния шин, качества дороги)

Зависимость тормозного пути от погодных условий.

Зависимость тормозного пути от скорости движения автомобиля.
Наиболее распространенные нарушения участниками дорожного движения.
Выписка из п.13.1 правил дорожного движения
Ребята, скажите, какие средства пассивной безопасности современного автомобиля вы знаете?
Самым распространенным средством пассивной безопасности современного автомобиля являются ремни безопасности. Во время движения пассажиры и водитель должны быть пристегнуты ремнями безопасности! Почему существует данное правило?
Ремни безопасности предназначены для предотвращения перемещения и удержания человека на месте в автомобиле при аварии.Принцип действия ремней безопасности основан на блокировании. При столкновении автомобиля с препятствием тело человека по инерции продолжает двигаться вперед. В этот момент ремень безопасности блокируется, фиксируя человека в сидении.

Ремни безопасности должны использоваться всегда - даже во время езды на транспортных средствах оборудованных подушками безопасности. Подушки безопасности автомобиля (airbag) предназначены для смягчения удара пассажиров в случае автомобильной аварии (столкновения, наезда на препятствие, жесткого приземления после прыжка, падения). Подушка безопасности представляет собой эластичную оболочку, наполняемую газом. Активация подушек безопасности происходит при ударе. В зависимости от направления удара активируются только определённые подушки безопасности.

Правила для пешеходов.

Стихотворение

Правил дорожных на свете немало,
Все бы их выучить вам не мешало.
И основное из правил движенья
Знать как таблицу должны умноженья!

Если хочешь живым и здоровым остаться, –
На мостовой не играть, не кататься!

Футбол – хорошая игра
На стадионе, детвора.
Хоккей – игра на льду зимой.
Но не играй на мостовой!

Цеплять крючком машины борт –
Опасный и ненужный спорт.
Щади здоровье, жизнь щади
И за движением следи.

И проспекты, и бульвары,
Всюду улицы шумны.
Проходи по тротуару
Только с правой стороны.
Тут шалить, мешать народу
Запрещается!
Быть примерным пешеходом
Разрешается!

Юные граждане Тани и Пети,
Твердо запомните правила эти.
Где улицу надо тебе перейти,
О правиле помни простом:
С вниманьем налево сперва посмотри,
Направо взгляни потом.
Запрещающие знаки необходимо знать и пешеходам, и водителям. Почему запрещающие знаки отмечены красным цветом? (Лучи света в зависимости от его цвета по - разному распространяются в атмосфере. Лучи красного цвета имеют наибольшую длину волны, наибольшую скорость распространения и расходятся с наименьшими потерями. Следовательно, именно на красный свет наш глаз отреагирует быстрее всего. В темное время суток и даже в туман они видны на значительном расстоянии.)

Хотя в нашем поселке их нет, но мы обязаны поговорить и о нем – светофоре.
Чтоб тебе помочь
Путь пройти опасный,
Горит и день и ночь,
Зеленый, желтый, красный.

Наш домик светофор -
Мы три родные брата,
Мы светим с давних пор
В дороге всем ребятам.

Мы три чудесных цвета,
Ты часто видишь нас,
Но нашего совета
Не слушаешь подчас.

Самый строгий - красный свет.
Если он горит: Стой!
Дороги дальше нет,
Путь для всех закрыт.

Чтоб спокойно перешел ты,
Слушай наш совет: Жди!
Увидишь скоро желтый
В середине свет.

А за ним зеленый свет
Вспыхнет впереди,
Скажет он:
- Препятствий нет,
Смело в путь иди.

Коль выполнишь без спора
Сигналы светофора,
Домой и в школу попадешь,
Конечно, очень скоро.
Объясните, почему именно эти три цвета используют в работе светофора?

(Именно эти три цвета наиболее хорошо воспринимаются глазом человека по своим физическим параметрам (длине волны) Глаза человека на свет различной длины волны реагируют с большей или меньшей чувствительностью. Выбор разрешающего зеленого света обусловлен максимальной приближенностью этого цвета к уровню наиболее ясно воспринимаемой части спектра. Он виден в отличие других цветов светофора с максимально большого расстояния)

Для чего промежуточный желтый цвет?

(Желтый свет светофора недаром называют предупреждающим. Он нужен для того, чтобы водитель заблаговременно до начала красного сигнала начал тормозить, при этом учитывается такое физическое явление, как инерция.)

Сила трения

Для чего осенью на трамвайный линиях вывешивается знак «Осторожно, листопад»

(Влажные листья, вода, создавая смазку, уменьшают силу трения, что значительно увеличивает тормозной путь.)
Сила трения

Что означает данный знак? (Шипованная резина)

Для чего в транспортных средствах, имеющих шипованные шины, устанавливают такой знак? (Этот знак означает для сзади идущих машин - Держи дистанцию. Укороченный тормозной путь.
Транспортные средства, у которых установлены шины с шипами, на обледенелом покрытии имеют более высокую эффективность торможения и укороченный тормозной путь, который примерно в 2 раза меньше, чем тормозной путь транспортных средств без шипов.)

Законы оптики

(Такие наклейки в темноте начинают светиться и становятся очень заметными. На самом деле в наклейке нет ни лампочек, и она ни как не подсвечивается; свечение происходит за счет отражения света материалом, из которого и изготовлена светоотражающая наклейка.)
А теперь отгадайте загадки:

Тем прибором выявляют
Тех, кто скорость превышает.
Говорит локатор строгий:
- Нарушитель на дороге! Радар
Все водителю расскажет,
Скорость верную укажет.
У дороги, как маяк,
Добрый друг - … Дорожный знак
Красный круг, а в нем мой друг,
Быстрый друг - велосипед.
Знак гласит: здесь и вокруг
На велосипеде проезда нет. Езда на велосипедах запрещена
Примостился над дорогой
И моргает очень много,
Изменяя каждый раз
Цвет своих округлых глаз. Светофор
Бежит, иногда гудит.
В два глаза зорко глядит.
Только красный свет настанет –
Он в момент на месте встанет. Автомобиль
Слог мой первый спать велит,
Средний - в музыке звучит,
А последний меру знает;
Целым скорость измеряют. Спидометр
Подведение итогов:

В жизни много опасностей и одна из них - дорога, чтобы уберечь свою жизнь, мы должны знать Правила дорожного движения и выполнять их, ведь жизнь самое ценное, что есть у человека.
Законы физики неумолимы. Их действие нельзя отменить по вашему желанию. Они действуют всегда и везде. Мы должны их знать и правильно использовать. Физика - это не просто сухие законы и четкие формулы. Физика помогает нам ориентироваться в окружающем мире, физика должна сделать нашу жизнь безопасной.

Есть еще один важный аспект, заслуживающий внимания. Современные автомобили имеют такой высокий уровень комфорта, что обратная связь в них минимальна и сводится к нулю. Водитель словно погружается в виртуальное пространство: ветровое стекло превращается в экран компьютера, а руль становится джойстиком. Такие ощущения провоцирует сам автомобиль, уверенно, словно по рельсам, летящий по дороге, что кажется возможным пройти поворот любой крутизны на любой скорости. На самом деле это очень обманчивое ощущение. Рано или поздно в силу вступают законы физики, выталкивающие автомобиль в кювет или на полосу встречного движения.

Рассмотрим силы, действующие на автомобиль в такой ситуации.

Любое движущееся тело имеет свою массу. Для замедления или изменения направления движения этой массы к ней требуется приложить силу. Чем большего изменения в характере движения мы хотим от массы, тем большую силу требуется приложить.

Силы, действующие на движущийся автомобиль, проходят через три оси (рис. 2). Горизонтальная поперечная ось, та, по которой происходит перераспределение веса в повороте. В левом повороте автомобиль кренится направо, в правом – налево. Любой водитель и пассажир всегда ощущают эту силу во время поворота. Вес груженого автомобиля составляет как минимум одну тонну. Даже маленькая малолитражка с четырьмя пассажирами на борту будет весить именно столько. Автомобили среднего и представительского класса весят около двух тонн, а внедорожники легко тянут на три, три с половиной тонны. Этот вес покоится на четырех пружинах подвески. Понятно, что он будет неустойчив, обязательно «захочет» накрениться. Почему одна сторона кузова поднимается – движется вверх, в то время как противоположная опускается – движется вниз, понять крайне просто: кузов расположен на пружинах, которые могут сжиматься и разжиматься. Крен автомобиля в повороте – это естественное и понятное движение кузова автомобиля относительно колес. В результате перемещения веса в сторону внешних колес в повороте, на них начинает давить большая сила (рис. 3). Означает ли это, что их сцепление с покрытием дороги увеличивается? Конечно да! Но вес, давящий на внутренние колеса, уменьшился, так как часть его перешла на наружную сторону – произошло динамическое перемещение веса. Значит, сцепление внутреннего колеса с покрытием дороги уменьшилось. Крен автомобиля зависит от расположения его центра тяжести, ширины шин, жесткости амортизаторов и конструкции подвесок. Например, болиды «Формулы-1» практически не кренятся даже на огромных скоростях в поворотах. Они сконструированы специально для движения с огромной скоростью, и, хотя динамическое перемещение веса у них происходит точно так же, как и у обычного автомобиля, крен почти не виден. Это объясняется сверхкороткоходной подвеской, очень широкими колесами, жесткими пружинами и работой специальных приспособлений, которые называются стабилизаторами поперечной устойчивости (рис. 4). Из названия понятно, что они как раз и придуманы, чтобы не давать кузову крениться. Подобные приспособления имеются и на обычных городских автомобилях и внедорожниках, только они, конечно, не могут быть такими жесткими как на гоночных и спортивных машинах. Обычные машины должны быть комфортабельными, а это означает, что их пружины и стабилизаторы подбираются так, чтобы обеспечить мягкость хода на неровностях. Да и шины у них не такие широкие, и центр тяжести из-за большого дорожного просвета расположен значительно выше. Хотя уже появились и серийные машины, которые почти не кренятся в поворотах. Их амортизаторы оснащены специальной гидравлической системой, управляемой электроникой, которая дает команды поднимать внешнюю сторону кузова в поворотах. Идея сделать одну сторону автомобиля жестче, если поворачивать приходится все время в одну сторону, не нова. Именно так и поступают американские гоночные инженеры, готовящие свои болиды для гонок на овалах, например в Индианаполисе.


Рис. 2. ОСИ ВРАЩЕНИЯ АВТОМОБИЛЯ:

А – горизонтальная,

Б – вертикальная,

В – продольная.


Крен автомобиля в повороте – это естественное и понятное движение кузова автомобиля относительно колес.



Рис. 4. СХЕМАТИЧНЫЕ ИЗОБРАЖЕНИЯ РАБОТЫ СТАБИЛИЗАТОРА

Стабилизаторы поперечной устойчивости не дают кузову автомобиля сильно крениться в повороте. П-образный металлический пруток работает на скручивание, сопротивляясь крену кузова в поворотах. На современных автомобилях имеются передний и задний стабилизаторы.


Теперь рассмотрим продольную ось (рис. 5). При резком старте капот автомобиля приподнимается. Это видит водитель со своего места, а на самом деле приподнимается вся передняя часть машины, передние пружины разгружаются, вес перемещается назад – задние пружины сжимаются. Вес автомобиля, естественно, остается неизменным, и мы говорим только о динамическом, кратковременном перемещении веса. Насколько сильно перемещается вес? Если вес автомобиля принять за 100 %, а ускорение за 0,5 G, что соответствует ускорению 18 км/ч, то задняя часть автомобиля станет на 15 % тяжелее. Немного? Да, но эффект от этого большой! На заднеприводных автомобилях он выражается в лучшем старте машины за счет большего давления на ведущие колеса, и, следовательно, улучшения их сцепления с дорогой. Значит ли это, что, если водитель прибавляет газ во второй половине поворота, за счет улучшающегося сцепления задних колес машина будет устойчивей? Разумеется, да (рис. 6). Но не надо забывать, что переднеприводник за счет разгрузки передних колес будет хуже стартовать, да и в повороте любое прибавление газа уменьшает сцепление его ведущих колес. При торможении (возьмем пример с замедлением в 9,81 м/с2) перемещение веса приобретает поистине драматический характер. Например, на переднеприводном автомобиле, где мотор с коробкой передач находится спереди (а это дополнительный вес на переднюю ось), при торможении задние колеса разгружаются настолько сильно, что малейший поворот руля вызывает их занос (рис. 7), так как в этот момент на задние шины давит всего 12 % от всего веса автомобиля. Если просто резко отпустить педаль газа, то вес также переместится вперед, разгружая задние колеса.


При резком старте приподнимается вся передняя часть машины, передние пружины разгружаются, вес перемещается назад – задние пружины сжимаются.


Рис. 6. ДИНАМИЧЕСКОЕ ПЕРЕРАСПРЕДЕЛЕНИЕ ВЕСА ПРИ РАЗГОНЕ АВТОМОБИЛЯ

Во время ускорения вес перемещается назад и загружает заднюю часть автомобиля. Сцепление задних шин с покрытием дороги увеличивается. Автогонщики, зная об этом, умело используют загрузку задних колес для стабилизации автомобиля, чтобы нейтрализовать избыточную или недостаточную поворачиваемость.


Рис. 7. ДИНАМИЧЕСКОЕ ПЕРЕМЕЩЕНИЕ ВЕСА ПРИ ТОРМОЖЕНИИ

Вес, действующий на переднюю часть автомобиля увеличивается, соответственно задок автомобиля разгружается. Гонщики используют этот эффект облегчения задней оси, чтобы искусственно вызвать занос автомобиля, помогающий пройти поворот на большой скорости.


Линия, проведенная через крышу до самой дороги через центр тяжести автомобиля, называется вертикальной осью. В момент заноса машина начинает вращаться вокруг этой вертикальной оси. Для большинства водителей такая ситуация часто оказывается полной неожиданностью (рис. 8).


Рис. 8. ВРАЩЕНИЕ АВТОМОБИЛЯ

В момент заноса машина начинает вращаться вокруг этой вертикальной оси. Для большинства водителей такая ситуация часто оказывается полной неожиданностью.


Однажды мой приятель захотел прокатить меня с ветерком на своей новой машине, а заодно и удивить мастерством вождения на загородном шоссе. Он без промедления ринулся обгонять длинный хвост машин, да слишком поздно включил пониженную передачу, перешел с четвертой на третью. Это я подметил сразу. Но расстояние между машинами справа не позволило ему втиснуть машину, а мы неотвратимо приближались к крутому правому повороту впереди. Приятель решил, что успеет обогнать следующие две машины и юркнуть в то спасительное свободное место, что было перед ними. Почти успел, но его возвращение в правый ряд после обгона практически совпало с началом поворота. Он резко бросил газ, и, как только начал поворачивать руль, наш автомобиль поплыл задней осью в сторону. «Газу, газу», – закричал я. Мой приятель подчинился и поймал вышедшую из-под контроля машину. Если бы он начал тормозить в этот критический момент на входе в поворот, как поступают, увы, в любой аварийной ситуации большинство водителей (а среди них многие считают себя асами), шанс на выход из этой ситуации был бы сведен к нулю.

Какие силы действовали в этот момент на машину, и как удалось изменить их расстановку. Шины задней оси потеряли сцепление из-за резкого перемещения веса. Замедление было вызвано сбросом газа, вследствие чего произошло перемещение веса вперед. Поворот руля вызвал перемещение веса на внешние колеса. Это означает, что давление на определенные колеса изменилось, следовательно, изменилось и их сцепление с дорогой. В нашем случае перемещение веса шло одновременно в двух направлениях: продольном и поперечном. Идеальная ситуация, в результате которой автомобиль едва ли не всегда норовит выйти из-под контроля. Водитель хотел изменить направление, во что бы то ни стало заставить машину повернуть, в то время когда она опиралась практически всем своим весом на одно-единственное внешнее к повороту переднее колесо. А для замедления или изменения направления движения массы автомобиля к ней требуется приложить силу. Но площади контакта с дорогой одного-единственного колеса для того, чтобы эта сила подействовала, явно недостаточно. Что же произошло, когда водитель прибавил газ? Вес перераспределился назад, и задние колеса обрели сцепление (внешние больше, внутренние меньше), что и остановило начинающийся занос задней оси. Прибавляя газ, водитель чисто интуитивно немного повернул руль обратно – «распустил» машину, добавил нагрузки на внутренние к повороту колеса.

Гонщики в аналогичных ситуациях поступают точно так же. Они точно знают, как автомобиль будет реагировать на перемещение веса, а обычный водитель о перемещении веса часто не задумывается. А любое изменение направления или характера движения, будь то ускорение или замедление, поворот налево или направо, обязательно сопровождается перемещением веса, которое изменяет сцепление шин с дорогой. Конечно, автолюбителю не обязательно уметь филигранно направлять свой автомобиль в повороты с головокружительной скоростью, как делает автогонщик, умело использующий перемещение веса в свою пользу. Но знать элементарные законы физики, сопровождающие автомобиль в движении, он обязан.

Если предположить, что предстоит ездить по абсолютно гладкой поверхности, например как сукно бильярдного стола или поверхность ледяного катка, то о вертикальном перемещении веса автомобиля говорить не придется. На практике дорога – это волнистый асфальт, бугры, крутые подъемы и спуски, ямы и другие неровности.

Представим ситуацию: машина въехала с большой скоростью на бугор. Кузов устремляется вверх, подвеска разгружается, и в этот момент водитель решил изменить направление движения. Это ошибка. Именно в это мгновение контакт шин автомобиля с дорогой очень слабый. А буквально через секунду, когда кузов автомобиля опустится, шины вновь обретут сцепление, причем еще большее, чем до подскока. В этот момент машина чутко откликнется на поворот руля (рис. 9).


Машина въехала с большой скоростью на бугор: кузов устремляется вверх, подвеска разгружается – в это мгновение контакт шин автомобиля с дорогой очень слабый или отсутствует вовсе.


Поведение автомобиля на буграх очень хорошо изучили раллисты. Они проносятся по ним с такой скоростью, что автомобиль взлетает высоко в воздух, и поэтому называются у них такие неровности не иначе как трамплины.

На поведение автомобиля в повороте, на его устойчивость оказывает влияние также и принцип конструкции автомобиля: передний, задний или полный привод, расположение двигателя. Важную роль играет и развесовка машины – в какой пропорции вес распределяется между передней и задней осью. Разумеется, автомобили с современными многорычажными подвесками охотнее исполняют волю водителя в поворотах, чем те, у которых подвески устаревшего образца. Но это чисто технические причины. Огромную роль играет и величина сил, действующих на машину в поворотах. Водители, не вникая в подробности, говорят в данном случае о том, как держат шины – хорошо или плохо? Влияет на устойчивость и дополнительный вес – едет ли водитель один или с пассажирами, есть ли тяжелый багаж, много ли топлива в баке. Ускорение в повороте, конструкция подвесок, давление в шинах, торможение – все это может самым непосредственным образом повлиять на то, какие шины – передние или задние – начнут терять сцепление первыми? Это очень важный вопрос.

Помните, что мы говорили про снос или занос? Если скользят передние шины, то это снос или недостаточная поворачиваемость. Если задние, то мы имеем дело с заносом, и это называется избыточной поворачиваемостью. Если скользят все четыре шины одновременно – это нейтральная поворачиваемость (рис. 10). Понятно, что последний вариант предпочтительнее, так как он не предусматривает вращение автомобиля вокруг вертикальной оси. Если автомобиль поворачивает в повороте, в то время когда водитель не крутит руль, то это и будет называться поворачиваемостью. Рассмотрим более подробно, что это такое.


Рис. 10. ЭТА СХЕМА НАГЛЯДНО ДЕМОНСТРИРУЕТ РАЗЛИЧНЫЕ ВИДЫ ПОВОРАЧИВАЕМОСТИ:

1. Недостаточная поворачиваемость возникает, когда угол увода передних шин больше, чем у задних. Это снос передних колес, характеризующийся нежеланием автомобиля поворачивать. Траектория движения в повороте распрямляется.

2. Избыточная поворачиваемость возникает, когда угол увода задних шин больше, чем у передних. Это занос задних колес, когда машина поворачивает больше, чем того желает водитель.

3. При нейтральной поворачиваемости углы увода передних и задних шин – одинаковые.


Вначале небольшой экскурс в теорию движения автомобиля, вернее в тот подраздел, где рассматривается увод колес в повороте. Представим себе, что водитель повернул колеса в повороте на определенный угол. На маленькой скорости машина пошла по заданному радиусу. Если описать окружность, то она будет иметь определенный диаметр, независимо от того, сколько кругов по ней накатать (угол поворота колес остается неизменным). Начнем увеличивать скорость и увидим, что диаметр нашей окружности начал увеличиваться. Это увеличение вызывает увод шин, направление пятна контакта с покрытием площадки начало смещаться относительно диска колеса. Теоретическое направление качения шины стало отличаться от реального, заданного определенным поворотом руля. Простыми словами, направление шины стало отличаться от направления диска колеса (рис. 11). Именно этот угол, определяющий разницу теоретического и реального направления шины, и показывает величину увода, который привел к увеличению радиуса нашей окружности. Поедем еще быстрее. В какой-то момент сцепление шин достигнет критического значения, и они начнут скользить. Одновременно все четыре? Это не худший вариант, так как в этом случае скольжение просто еще больше увеличит диаметр окружности, но не вызовет вращение автомобиля вокруг вертикальной оси. Такое поведение автомобиля в момент потери сцепления и скольжения всех четырех шин и называют нейтральной поворачиваемостью. Ее характеризует то, что все четыре колеса имеют одинаковый угол увода. Именно так стараются настроить свои болиды автогонщики, что позволяет им полностью контролировать их поведение на больших скоростях в поворотах.


Рис. 11. УГОЛ УВОДА ШИНЫ

А – прямо

Б – направление движения

В – направление управляемого колеса

При увеличении скорости в повороте наступает момент, когда направление, куда смотрит шина, несколько отличается от того, куда в действительности сориентирован обод колеса. Угол между направлением качения шины и плоскостью вращения колеса называется углом увода.


На практике часто бывает по-другому: то передние колеса начнут скользить первыми, то задние. В первом случае угол увода передних колес будет больше, чем у задних. Машина перестанет слушаться повернутых передних колес и будет стремиться уйти от окружности по касательной. Это типичный пример сноса передней оси, а поведение автомобиля в такой ситуации называется недостаточной поворачиваемостью.

Если первыми сорвутся в скольжение задние колеса, это вызовет избыточную поворачиваемость, которую характеризует больший угол увода задних колес. Это классический пример заноса, когда задок машины норовит обогнать передние колеса, разворачивая ее носом к вершине поворота.

Смоделировать различные проявления поворачиваемости можно на площадке на одном и том же автомобиле. Для этого перед началом движения по окружности надо сначала спустить наполовину давление в передних шинах, чтобы они быстрее потеряли сцепление и начался снос передка. Затем восстановить давление в передних шинах и спустить наполовину в задних, что вызовет занос.

Зачем это знать обычному водителю? Любой автомобиль с нормальной загрузкой и средним сцеплением шин будет запрограммирован на определенное поведение в критической ситуации в повороте. Предположим, если речь идет о переднем приводе – проявится недостаточная поворачиваемость. Тот же самый автомобиль, но уже при других условиях, например, с полной загрузкой и на скользком покрытии при превышении критичной скорости, продемонстрирует избыточную поворачивае-мость, характерную для заднего привода. Главное понять, что водителя, который не знает, как поведет себя автомобиль в критической ситуации, какие ответные действия помогут ему не потерять контроль над ситуацией, нельзя назвать безопасным. Водитель обязан точно знать, что может случиться на дороге и как с этим бороться.

Конструкторы стараются придать своим творениям нейтральные качества в критических ситуациях. Именно это имеют в виду журналисты, описывая норов автомобильной новинки, сообщая читателю: «Управляемость выше всяких похвал». Но не все производители «вживляют» в свою продукцию характер нейтральной поворачиваемости, как например, спортивные модели БМВ и «порше».

Как застраховаться от неумелых действий водителей за рулем мощного и быстроходного автомобиля? Скорее всего, это будет выглядеть таким образом: влетая в поворот с завышенной скоростью, неопытный водитель испугается, резко бросит педаль газа и еще круче повернет руль, что вызовет занос задка. Именно поэтому инженеры стараются придать спортивным автомобилям склонность к недостаточной поворачиваемости, по крайней мере в первый момент скольжения шин. Такой характер поведения автомобиля будет несколько противостоять склонности к заносу задней оси в данных условиях. Но в целом заднеприводные автомобили сохраняют нейтральную поворачиваемость в начале скольжения, что в предельных режимах все равно выльется в избыточную поворачиваемость или занос. Точно так же переднеприводные автомобили могут сначала в скольжении демонстрировать нейтральное поведение, но более глубокое скольжение все-таки закончится ярким проявлением недостаточной поворачиваемости или сносом (рис. 12) .



Движение по окружности – лакмусовая бумажка для проявления индивидуальных характеров машин с разными типами приводов. Задний привод тяготеет к избыточной поворачиваемости, передний – к недостаточной.

Нейтральная поворачиваемость характеризует машины с полным приводом.


Как и где проверить характер вашего автомобиля, его склонность к сносу и заносу? Для этого требуется площадка без ограждений, на которой можно безопасно выписывать окружность как минимум 30 м в диаметре. Чтобы быстро ехать на гоночной машине, гонщик обязательно проверяет поведение своей машины на тренировках. Он может, применяя те или иные приемы пилотирования, влиять на поведение машины или изменить настройки подвесок, чтобы добиться желаемой управляемости. Почему же подавляющее большинство водителей не желают проверить, как поведут себя их автомобили в критической ситуации?

Но главные проблемы начинаются, когда на автомобиль действуют сразу несколько сил. Например: автомобиль тормозит, потом поворачивает, причем вершина поворота находится на холме. Значит, на шины действуют силы отрицательного продольного ускорения, то есть торможения, бокового ускорения в повороте, да еще и вертикального, так как машину подбросило вверх. Причем не строго по указанным векторам, а во всех направлениях. Силы, действующие на шину в повороте, можно представить графически.

Но сначала, чтобы было понятнее, рассмотрим такую ситуацию: хозяйка налила вам в тарелку борщ, и вам следует проследовать с тарелкой в столовую. «Хорошо, что еще не до краев налила!» – бормочете вы и внимательно смотрите на тарелку, чтобы не пролить суп. А он так и норовит пролиться через край по направлению вперед и влево. Стоп! Почему вперед и влево? Да потому что вы только что затормозили в конце коридора и повернули вправо. Точно так же запас сцепления шин устремляется вперед и вправо при торможении и повороте влево на нашем графическом изображении. Посмотрите, как только вы снова пошли, суп устремился назад, точно так же как у автомобиля, трогающегося с места, загружается задняя ось, из-за чего сцепление задних шин возрастает.

Первым предложил использовать окружность для графического изображения работы шины в повороте профессор Вунибальд Камм (1893–1966), работавший в техническом университете в городе Штутгарт, в Германии. Вероятно, прежде чем господин Камм пришел к выводу, что можно графически изобразить запас сцепления шины в повороте, он так же покружил с тарелкой супа в руках. Только это был не борщ, а немецкий айнтопф, но на результаты эксперимента это не повлияло.

Итак, силы, действующие на шину в повороте, можно изобразить векторами. Эта сила может быть большой, средней или нулевой. Измерять ее нет никакой необходимости, для нашего графика это неважно (рис. 13). Важно только что длина стрелки изображает – максимум, половина стрелки – середину максимума и ноль – ничего. Направление стрелки возможно в любую сторону, поэтому обведем вокруг окружность. Расстояние от центра до окружности изображает в данном случае максимальное боковое или продольное ускорение. Что происходит на линии окружности? Это и есть зона турбулентности, здесь силы сцепления иссякают и уступают место силам скольжения. В этой зоне достигается максимальное сцепление шины с дорожным покрытием, шины находятся в состоянии контролируемой нестабильности. Окружность профессора Камма наглядно показывает, что тормозить и разгоняться в повороте можно, важно только правильно распределить соотношение сил продольных и поперечных ускорений. Конечно, на практике все намного сложнее, но это помогает понять принцип работы шины в повороте. Скажу по секрету, что благодаря этой теории и была изобретена антиблокировочная система тормозов.


График показывает, что в данном повороте при боковых ускорениях «В», мы можем тормозить настолько интенсивно «Б», чтобы результирующий вектор «Б» был не больше, чем окружность, определяющая предел сцепления шин.

На границе окружности шина теряет сцепление и автомобиль становится неуправляемым.


Поверхность полусферы профессора Камма (рис. 14) показывает вертикальное ускорение. Мы говорили о том, что вершина поворота может находиться на холме или на изломе. В этот момент машина станет легче, а вектор устремится в направлении поверхности полусферы, снижая сцепление шины с покрытием дороги. В этот момент способность шины поворачивать, разгоняться или тормозить сильно ограничена. За разгрузкой подвески последует ее сжатие, и неизбежно возникнет прижимная сила – вес машины увеличится, сцепление шин улучшится. Графически это показывается увеличением окружности, отодвигающей зону начала скольжения. Это самый подходящий момент, чтобы тормозить или поворачивать.


При проезде бугра автомобиль становится легче, и его возможности тормозить и поворачивать снижаются.

При проезде впадины – наоборот, окружность полусферы становится больше, значит, сцепление шин увеличивается под воздействием дополнительной нагрузки.


Подведем итог и суммируем вышесказанное. Управление автомобилем в движении создает силы, действующие на машину. Водитель может эти силы в процессе «борьбы» с дорогой и машиной увеличивать или уменьшать, но они все равно будут подчиняться законам физики. Грамотное управление автомобилем состоит в умении водителя понимать и не нарушать эти законы, а умело их использовать. Быстро, но безопасно ехать на автомобиле – значит умело балансировать на границе окружности профессора Камма (рис. 15) . А в балансе главное чувствовать перемещение веса и не перебарщивать с ним. Иначе ваш борщ выплеснется из тарелки!



Быстро, но безопасно ехать на автомобиле – значит умело балансировать на границе окружности. А в балансе главное чувствовать перемещение веса.

Слайд 2

План презентации

Общие сведения об автомобилях. Почему автомобиль движется? Задачи о движущемся автомобиле. Расчёт тормозного пути. Почему возникают ДТП? Безопасность пассажиров Как вести себя в экстремальной ситуации?

Слайд 3

Самодвижущийся экипаж (а именно так переводится слово «автомобиль») создали в 1885 году немецкие изобретатели Карл Бенц и Готлиб Даймлер. Появиться автомобиль смог только благодаря изобретению Даймлером в 1883 году бензинового двигателя внутреннего сгорания - цилиндрической камеры, внутри которой вперед-назад движется поршень. В цилиндры двигателя впрыскивается смесь воздуха с капельками бензина, приготовленная в карбюраторе. Поршень сжимает смесь, электрическая искра зажигает ее, и горячие газы сгоревшей смеси с силой толкают поршень обратно - происходит рабочий ход. На обратном пути поршень выжимает продукты сгорания из цилиндра, а затем засасывает новую порцию смеси. Поршни, двигаясь, вращают коленчатый вал. Двигатель соединён с коробкой передач - системой шестерен, которые позволяют изменять скорость автомобиля, и через нее с ведущими колесами (передними, задними или с обоими).

Слайд 4

Работа четырёхтактного двигателя

1 такт работы ДВС(такт впуска) 2 такт работы ДВС (такт сжатия) 3 такт работы ДВС (рабочий такт) 4 такт работы ДВС (такт выпуска):

Слайд 5

В четырёхтактном двигателе одновременно совершаются все такты: A – впуск; B – сжатие; C – рабочий ход; D – выхлоп. Один рабочий ход за два оборота вала.

Слайд 6

В 1908 году появился и первый российский автомобиль «Руссо-Балт». Его выпуск наладили на Русско-Балтийском вагоноремонтном заводе в Риге. С каждым годом улучшалась конструкция автомобилей, росла скорость, мощность двигателя, менялся внешний вид. За каких-нибудь сто лет автомобиль изменил мир. Сама машина тоже изменилась. Неуклюжий «безлошадный экипаж» превратился в быстрый, удобный и надёжный транспорт. Во время движения автомобиля и бензиновые, и дизельные двигатели выбрасывают через выхлопную трубу отработанные горячие газы. В этих газах много вредных веществ, которые отравляют окружающую среду. Во многих странах приняты жёсткие требования к двигателям автомобилей, ограничены нормы выброса вредных веществ. Но автомобилей в мире сотни миллионов и, конечно, они наносят большой ущерб природе.

Слайд 7

Автомобильные конструкторы давно пытаются заменить бензиновый двигатель электрическим. Автомобиль с электрическим мотором называют электромобилем. Но электрический мотор по мощности гораздо слабее бензинового, а его зарядные устройства - аккумуляторы - не рассчитаны на долгую поездку без подзарядки. В начале 21 века появились гибридные двигатели, то есть автомобиль оснащается и бензиновым, и электрическим моторами.

Слайд 8

Современный легковой автомобиль

Обычный легковой автомобиль рассчитан на трёх-четырёх пассажиров, не считая водителя, и относительно небольшого количества груза в багажнике или в заднем отсеке кузова. Однако есть также и миниатюрные двухместные машинки для города, и огромные, на 7-8 пассажиров - автомобили представительского класса. Современный легковой автомобиль оснащён множеством электронных схем, которые отслеживают самые различные параметры работы. Автомобильная электроника управляет работой двигателя, сообщает водителю о неполадках, о количестве топлива, о скорости автомобиля, отслеживает комфортную температуру в салоне, способна даже определить место нахождения автомобиля в любой точке Земле и даже проложить оптимальный маршрут движения.

Слайд 9

Роботизированная линия сборки, управляемая компьютером и запрограммированная на производство около 3000 сварных швов на корпусе каждого автомобиля, проходящего по конвейеру.

Слайд 10

Современное высокоавтоматизированное производство широко использует промышленные роботы. Автоматизированные линии и целые заводы уже не редкость. При наличии отработанной технологии и гарантированного качества используемых комплектующих человека вполне может заменить автомат. Постоянно работающие заводы способны производить сборку из готовых деталей не только автомобилей, но и электронных изделий, бытовой техники и вообще любой продукции, состоящей из стандартизованных комплектующих.

Слайд 11

В каких случаях автомобиль начинает двигаться самостоятельно

Автомобиль может скатиться вниз не с любого возвышения. На автомобиль, находящийся на наклонной плоскости, действуют три силы: сила тяжести, направленная вертикально вниз, сила нормального давления, направленная перпендикулярно плоскости, и сила трения покоя, направленная вдоль наклонной плоскости вверх. Автомобиль может находиться на плоскости в равновесии, если выполняется условие:

Слайд 12

Роль силы трения покоя в движении автомобиля

Сила трения покоя препятствует относительному движению тел, поэтому она часто «передаёт» механическое движение от одних тел к другим. Например, сила трения покоя «разгоняет» автомобили. Колесо автомобиля, вращаясь, толкает дорожное полотно назад, действуя на него силой трения покоя (нижняя точка колеса покоится). При этом Земля толкает колесо, а вместе с ним и автомобиль, соединённый с колесом, вперёд.

Слайд 13

Почему возникает сила трения качения?

Если сила трения покоя помогает автомобилю двигаться, то сила трения качения мешает этому При качении колесо немного вдавливается в поверхность, из-за чего катящемуся телу приходится всё время как бы вкатываться на небольшую горку – это и является главной причиной силы трения качения. Поэтому трение качения тем меньше, чем твёрже поверхности обоих тел – колеса и дороги. Вот почему хорошие дороги делают с твёрдым покрытием.

Слайд 14

Одновременное действие сил трения покоя и сил трения качения при движении грузовика с двумя ведущими колесами.

Слайд 15

Дорога

Современная автомобильная дорога – сложное сочетание инженерных сооружений. Она снабжена сигнальными знаками и указателями, наклонными виражами на поворотах, мостами вместо перекрёстков, транспортными развязками. Многоярусная дорожная развязка в центре города.

Слайд 16

Дорожные знаки

Дорожное движение регулируется знаками и правилами. Дорожные знаки - элемент оборудования дороги в виде щитка определенной формы с условными обозначениями или надписями, предназначенными для информации участников движения о конкретных условиях движения и состоянии дороги. Подразделяются на предупреждающие, приоритетные, запрещающие и информационно-указательные.

Слайд 17

Физический смысл дорожных знаков

В основе знаков и правил, регламентирующих дорожное движение, лежат объективные физические законы. Например, существование знаков, изображённых выше, обусловлено необходимостью учёта явления инерции.

Слайд 18

Светофор регулирует движение автомобилей и пешеходов на улице, поездов на железной дороге. Переходить улицу можно только на зелёный сигнал светофора. Обходить автобус и троллейбус сзади, а трамвай - спереди

Слайд 19

Зеркала заднего вида автомобиля

Для улучшения обзора дороги применяют зеркала заднего вида. В качестве зеркал заднего вида в автомобилях используют выпуклые зеркала. Они образуют прямые, уменьшенные, мнимые изображения, увеличивающие обзор.

Слайд 20

Что такое скорость? - Мадам, вы нарушили правила дорожного движения: вы ехали со скоростью 90 км/ч. - Я всего 7 минут назад выехала из дома, как же я могла проехать 90 километров в час. - Но если бы вы продолжали так ехать, то проехали бы за час 90 километров. - А я и не собиралась так ехать целый час! Я собиралась проехать ещё один квартал и остановиться. Как бы вы на месте полицейского объяснили, что такое скорость, и доказали, что правила дорожного движения всё-таки были нарушены?

Слайд 21

Измерение скорости движения

  • Слайд 22

    Задачи о движущемся автомобиле

    Среди множества задач о движущихся телах в механике задачи о движущемся автомобиле занимают особое место. Каждый из нас был пассажиром автомобиля, неоднократно наблюдал разнообразные ситуации на дорогах, хотел бы научиться водить автомобиль, т. е. представляет себя и в роли пассажира, и в роли пешехода. Задачи с конкретным физическим содержанием решать гораздо интереснее.

    Слайд 23

    Первым автомобилям запрещалось ехать со скоростью больше 3 километров в час. Впереди машины должен был идти человек с флагом для оповещения других участников движения. Рекорд скорости для автомобиля был установлен в 1983 году на английском автомобиле «Траст-2». Он развил скорость почти 1020 километров в час. Правда, вместо автомобильного двигателя на «Трасте» стоял двигатель от реактивного самолета.

    Слайд 24

    Задача 1

    Нажимая на педаль «газ», водитель увеличивает мощность, развиваемую двигателем автомобиля. При какой мощности начнётся пробуксовка колёс автомобиля, если коэффициент трения между шинами и дорогой 0,2, масса автомобиля 1 т, скорость автомобиля 60 км/ч, КПД двигателя 40 %?

    Слайд 25

    Задача 2

    Автомобиль движется по выпуклому мосту, имеющему форму дуги радиусом 40 м. Какое максимальное ускорение в горизонтальном направлении может развить автомобиль в верхней точке моста, если в этой точке его скорость 50,4 км/ч? Коэффициент трения колёс автомобиля о мост 0,57.

    Слайд 26

    Движение вверх по наклонной плоскости

    Задача 3 С каким максимальным ускорением может двигаться вверх по наклонной дороге автомобиль? Считать угол наклона полотна дороги и коэффициент трения между колёсами автомобиля и дорогой известными.

    Слайд 27

    Задача 4

    Грузовой автомобиль массой М = 4 т тянет за нерастяжимый трос вверх по уклону легковой автомобиль с выключенным двигателем. Автомобили движутся с ускорением 0,6 м/с2. Какова максимально возможная масса легкового автомобиля m, если угол наклона равен arcsin 0,1, а коэффициент трения между шинами грузового автомобиля и дорогой 0,2? Силой трения качения, действующей на легковой автомобиль, пренебречь.

    Слайд 28

    Силы, действующие на автомобиль при повороте

    Ускорение автомобиля обусловлено равнодействующей всех приложенных к автомобилю сил. Сила тяжести и сила реакции опоры направлены вертикально и компенсируют друг друга. Поэтому горизонтально направленное ускорение автомобилю сообщает сила трения покоя между колёсами и дорогой, что позволяет рассчитать допустимую скорость на повороте:

    Слайд 29

    Задача 5

    Шофёр грузовика, едущего со скоростью 72 км/ч, заметил на дороге знак. Сможет ли он, не сбавляя скорость, проехать поворот, если радиус поворота 25 м? Считайте значение коэффициента трения покоя равным 0,4. Почему водитель должен быть особенно внимательным в сырую погоду, во время листопада или при гололёде?

    Слайд 30

    Задача 6

    Оцените силу натяжения ремней безопасности, удерживающих водителя в автомобиле, если автомобиль, движущийся со скоростью 36 км/ч, в результате столкновения со столбом получил вмятину глубиной 60 см. Оцените силу, деформирующую кузов автомобиля.

    Слайд 31

    Расчёт тормозного пути автомобиля

    Тормозной путь - расстояние, пройденное транспортной машиной от начала торможения до полной остановки. Зависит от эффективности тормозных механизмов, времени срабатывания привода и тормозов, скорости движения, силы сцепления колес с опорной поверхностью (дорога, рельсы и т. п.).

    Слайд 32

    Пусть транспортное средство массой М, движущееся со скоростью υ, начинает тормозить, чтобы остановиться. Путь, пройденный автомобилем до остановки, можно определить, пользуясь теоремой о кинетической энергии: при неизменной силе трения тормозной путь тем больше, чем больше начальная кинетическая энергия автомобиля.

    Слайд 33

    Расчёт тормозного пути автомобиля по графику скорости

    Обратите внимание: путь, пройденный автомобилем до остановки, пропорционален квадрату его начальной скорости. Например, при увеличении скорости в 2 раза тормозной путь увеличивается в 4 раза! Вот почему движение на слишком большой скорости представляет опасность для водителя, пассажиров, пешеходов и других автомобилей.

    Слайд 34

    Задача, которую удобно решать графическиЗадача 7

    За пятую секунду равнозамедленного движения автомобиль проходит 50 см и останавливается. Какой путь прошёл автомобиль за третью секунду? Какую скорость имел автомобиль перед началом торможения?

    Слайд 35

    Задача 8

    На участке дороги, где установлен дорожный знак, изображённый на рисунке, водитель применил аварийное торможение. Инспектор ГАИ обнаружил по следу колёс, что тормозной путь равен 12 м. Нарушил ли водитель правила движения, если коэффициент трения (резина по сухому бетону) равен 0,6?

    Слайд 36

    Осторожно, пешеходы!

    Прежде чем выбежать на проезжую часть перед движущимся транспортным средством, вспомните про его тормозной путь. Даже при небольшой скорости грузовик обладает значительной кинетической энергией, так как обладает значительной массой. Масса легкового автомобиля меньше, чем у грузовика, но легковые автомобили обычно движутся с большими скоростями. При большой кинетической энергии тормозной путь такого транспортного средства может оказаться слишком длинным.

    Слайд 37

    Почему возникают ДТП?

    Улица часто становится местом, где возникают экстремальные ситуации. Опасность представляют собой общественный транспорт, грузовики и легковые автомобили. Причем, не только для тех, кто находится внутри, но и для пешеходов. А потому главное - необходимо всегда соблюдать правила дорожного движения. К ДТП могут привести невнимательность водителя или пешехода, нарушение правил дорожного движения, неисправность транспорта, плохая или скользкая дорога. Следует быть особенно осторожным и внимательным при переходе через дорогу, на переездах, посадочных платформах.

    Слайд 38

    Задача 9. Какая машина крепче? При столкновении грузовика с легковой машиной повреждение получает главным образом легковая. Но ведь согласно III закону Ньютона на обе машины должны действовать одинаковые силы, которые должны произвести одинаковые повреждения. Как объяснить это противоречие?

    Слайд 39

    Что происходит с кинетической энергией при столкновении?

    Задача 10 Какое столкновение автомобилей опаснее: лобовое или удар в заднюю часть тормозящей машины? Почему?

    Слайд 40

    Безопасность пассажиров

    Сидящие в движущемся автомобиле пассажиры обладают кинетической энергией. При внезапной остановке автомобиля каким-либо препятствием пассажир ещё продолжает движение по инерции и может травмироваться. Существуют различные защитные устройства, призванные уберечь водителя и пассажиров от ударов о ветровое стекло или руль автомобиля, потерявшего скорость.

    Слайд 41

    Конструкторы приложили немало усилий для того, чтобы сделать автомобиль безопасным. Все детали, применяемые в автомобилестроении, сделаны из негорючих материалов. Автомобильное стекло - триплекс - при ударе не разлетается на острые осколки. Пассажиров автомобиля попавшего в аварию спасут от травм подушки безопасности, спрятанные в различных местах салона. Но и обязательное пристегивание ремнями безопасности может спасти жизнь. Ребёнка можно перевозить только на заднем сиденье машины, а малышей - в специальном кресле, которое снабжено ремнями безопасности. Пешеходу же переходить дорогу только в положенных местах, где водитель наиболее внимателен!

    Слайд 42

    Испытания систем безопасности автомобиля

    Испытания систем безопасности автомобиля на заводах БМВ и «Вольво». В современном мире моторов и высоких скоростей сохранение жизни и здоровья водителя и пассажиров является важнейшей задачей. Для того чтобы испытать системы аварийной защиты, на предприятиях проводят искусственные аварии, максимально приближенные к возможным катастрофам. Автомобили разбивают о стены, заставляют сталкиваться друг с другом, опрокидывают, переворачивают. По результатам испытаний дорабатывают конструкции или полностью отказываются от компоновки кузова, не обладающего требуемым уровнем защиты пассажиров и водителя.

    Слайд 43

    Как вести себя в экстремальной ситуации?

    Что делать, если столкновение с каким-то препятствием неизбежно? Главное - сохранять самообладание, до предела напрячь мышцы, постараться защитить в первую очередь голову и грудь, вдавиться спиной в сиденье автомобиля или лечь на сиденье. Если автомобиль упал в воду, покидать его надо через лобовое окно (при открытой двери он тонет слишком быстро), разбив его тяжёлым предметом. Сразу же после аварии на дороге необходимо выбраться из автомобиля через двери или окна: возможно возгорание!

    Слайд 44

    Использованные информационные ресурсы:

    Ланина И. Я. Не уроком единым: Развитие интереса к физике. М., 1991. Большая энциклопедия Кирилла и Мефодия 2006, 10 CD. Иллюстрированный энциклопедический словарь, 2 CD. Энциклопедия «Мир вокруг нас», CD. Детская энциклопедия Кирилла и Мефодия 2006, 2 CD. Физика, 7 – 11 классы. Библиотека наглядных пособий, CD. Л.Э. Генденштейн, Ю.И. Дик. ФИЗИКА-10. Интерактивный учебник и др.

    Посмотреть все слайды

    ФИЗИКА И ПРАВИЛА ДОРОЖНОГО ДВИЖЕНИЯ ИЛИ О ТОМ КАК ФИЗИЧЕСКИЕ ЯВЛЕНИЯ ЗАСТАВИЛИ ЛЮДЕЙ ПРИДУМАТЬ ПРАВИЛА ДОРОЖНОГО ДВИЖЕНИЯ. Каких только движений нет в мире: от повторяющихся тысячелетиями движений звезд до прихотливого, почти непредсказуемого падения листочка березы в порыве осеннего ветра; от суеты пылинок, поблескивающих в солнечном луче, до определенных разумом и волей человека движений рукотворных тел: поездов, автомобилей, роботов. Работа многих людей связана с движением: шоферы, машинисты поездов, пилоты, диспетчеры и др. Правила дорожного движения описывают одновременно движения нескольких тел: автомобилей, велосипедистов, пешеходов. Первые известные попытки упорядочить городское движение были предприняты ещё в Древнем Риме Гаем Юлием Цезарем. По его указу в 50-х годах до н. э. на некоторых улицах города было введено одностороннее движение. С восхода солнца и до конца «рабочего дня» (примерно за два часа до его захода) был запрещён проезд частных повозок, колесниц и экипажей. Приезжие были обязаны оставлять свой транспорт за чертой города и передвигаться по Риму пешком, либо наняв паланкин. Тогда же была учреждена специальная служба надзора за соблюдением этих правил, в неё набирали в основном бывших пожарных, из числа вольноотпущенников. Основные обязанности таких регулировщиков заключались в предотвращении конфликтов и драк между владельцами транспортных средств. Многие перекрёстки оставались нерегулируемыми. Знатные вельможи могли обеспечить себе беспрепятственный проезд по городу - они высылали впереди своих экипажей скороходов, которые расчищали улицы для проезда хозяина. История современных правил дорожного движения берёт своё начало в Лондоне. 10 декабря 1868 года на площади перед Парламентом был установлен механический железнодорожный семафор с цветным диском. Его изобретатель - Джон П. Найт (John Peake Knigh) - был специалистом по железнодорожным семафорам. Устройство управлялось вручную и имело два семафорных крыла. Крылья могли занимать разные положения: горизонтальное - сигнал «стоп»; опущенные под углом 45 градусов - можно двигаться с осторожностью. С наступлением темноты включали вращающийся газовый фонарь, который подавал сигналы красным и зелёным светом. К семафору был приставлен слуга, в обязанности которого входило поднимать и опускать стрелу и поворачивать фонарь. Однако скрежет цепи подъёмного механизма был настолько сильным, что проезжавшие лошади шарахались и вставали на дыбы. Не проработав и месяца, семафор взорвался, находившийся при нём полицейский был ранен. Каждый из нас является участником дорожного движения, регулярно пользуется транспортом. Любое транспортное средство движется и придерживается определенной траектории под влиянием многих физических сил. Все эти силы делятся на два противоположных вида: одни содействуют движению автомобиля, другие сопротивляются этому движению. Сила тяжести - главная физическая сила, воздействующая на автомобиль. Сила тяжести всегда устремлена вертикально вниз, при этом она равномерно рассредоточивается по всем осям и колесам транспортного средства. Вес машины давит на поверхность проезжей части, и с увеличением этого веса пропорционально увеличивается сила сцепления колес с дорожным покрытием. Эта сила особенно заметно действует, когда машина трогается с места. При движении по наклонной дороге сила тяжести распадается на две составляющие. Одна давит на машину и прижимает ее к поверхности проезжей части, а вторая стремится опрокинуть ее по направлению движения или в поперечном направлении дороги (это зависит от направления уклона). Чем выше центр тяжести и чем больше угол наклона автомобиля, тем больше опрокидывающая сила, следовательно, выше вероятность опрокидывания. Помимо силы тяжести и силы опрокидывания на любое транспортное средство оказывает влияние ряд других физических сил, среди которых можно отметить следующие: сила сопротивления качению возникает при трении шины о дорогу; сила сопротивления подъему определяется массой автомобиля и углом подъема; сила инерции покоя, когда автомобиль трогается с места и разгоняется, направлена против движения; сила инерции движения направлена по ходу движения; центробежная сила направлена по радиусу от центра кривой поворота и стремится снести автомобиль с дороги; подъемная сила возникает при движении с большой скоростью от давления потока воздуха, попадающего под передок автомобиля, стремится оторвать колеса от дороги, ухудшая сцепление колес с дорогой и управляемость; сила сцепления зависит от нагрузки на ведущие колеса, состояния и качества дорожного покрытия, скорости; сила торможения возникает при торможении автомобиля. Интересно! При качении колесу всегда приходится преодолевать бугорок перед ним. Чем дорога тверже, тем бугорок ниже и сопротивление качению меньше. Поэтому автомобильные заезды на скоростные рекорды проводят обычно по дну высохших соляных озер, которые обладают очень твердой поверхностью. Транспортное средство будет двигаться только при условии, что сила тяги превышает силу инерции покоя, но при этом уступает силе сцепления ведущих колес с дорогой. Инерция движения позволяет транспортному средству ехать на большой скорости с незначительной подачей топлива (поэтому движение с постоянной скоростью 80– 90 км/ч считается самым экономичным) Силе торможения оказывают содействие силы сопротивления качению, подъему, воздуха и центробежная сила. Препятствует процессу торможения сила инерции движения. Чтобы сдвинуть с места и разогнать автобус, требуется большая сила, чем для автомобиля, потому что из-за большей массы его инерция выше. Величина центробежной силы определяется скоростью и весом транспортного средства, а также радиусом поворота. Следовательно, влияние этой силы можно уменьшить, зная, чем она вызвана. Для этого необходимо заблаговременно, до входа в поворот, уменьшить скорость движения до безопасной, а поворот проходить по более пологой кривой, уменьшив угол поворота управляемых колес. Не только вы управляете автомобилем - законы физики и механики исправно работают при движении автомобиля, и следует представлять себе действие различных сил, чтобы использовать их для управления или препятствовать их нарастанию. Для того, чтобы водитель правильно смог оценить обстановку и своевременно принять правильное решение знаки дорожного движения информируют и предупреждают о приближении к опасному участку, вводят ограничения Законы движения надо знать и помнить всем: и водителям, и пешеходам. Ведь для остановки движущихся тел нужны время и пространство. Автомобиль резко трогается с места. Куда вы отклонитесь? (назад) Автобус поворачивает налево. (вправо) Теперь направо. (налево) Автобус резко останавливается. (вперёд) Речь идет об инерции. Это явление необходимо учитывать, особенно на дороге, так как из-за инерции транспорт мгновенно остановить нельзя. Пункт 2.1.2 «Правил дорожного движения» обязывает при движении на транспортном средстве, оборудованном ремнями безопасности, быть пристегнутым водителю и не перевозить людей, не пристегнутых ремнями. Большая часть аварий случается из-за несоблюдения элементарных правил дорожного движения. Очень часто аварии происходят при обгоне, из-за того, что водитель не смог правильно рассчитать тормозной путь В процессе торможения на автомобиль действуют сила тяжести, сила реакции опоры и сила трения. При резком торможении автомобиля его колеса начинают скользить по дороге. Возникающая при этом сила трения скольжения тормозит автомобиль. Если Вы тормозите скольжением (юзом), намертво закрепляя колеса, то тормозной путь будет длиннее, чем при торможении качением (колеса заторможены, но проворачиваются), зато скорость вначале будет резко падать. Поэтому при опасности наезда на препятствие надо тормозить юзом лучше удариться с меньшей скоростью. Во всех остальных случаях надо тормозить качением: тормозной путь короче. От чего зависит длина тормозного пути? -От скорости автомобиля (Чем больше скорость машины, тем больше тормозной путь); -От массы машины (Чем больше масса машины, тем больше тормозной путь) -От состояния дороги, шин (Мокрая дорога тоже увеличивает тормозной путь. А зимой в гололёд машину остановить ещё трудней) Правила дорожного движения описывают одновременно движения нескольких тел: автомобилей, велосипедистов, пешеходов. Все они должны учитывать законы физики и совершать движения с учетом этих законов. В несчастных случаях на дорогах есть доля случая, но чаще в дорожно-транспортных происшествиях виноваты невнимательные пешеходы и нерадивые водители. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА festival.1september.ru›articles/597696/ obrbratsk.ru›upload/39.4.doc ru.wikipedia.org treniye.ru class-fizika.narod.ru ru-cars.net Энциклопедический словарь юного физика Большая иллюстрированная энциклопедия школьника, 2008г. Imajes.yandex.ru

    Аннотация урока.

    Урок решения задач "транспортной" тематики. Работа по решению подобных задач является одним из элементов здоровьесберегающих технологий. Конечно же, физика не тот предмет, где изучают комплекс физических упражнений, способствующих укреплению здоровья. Но и уроки физики могут воспитывать в ребенке сознание великой ценности здоровья, стремление его хранить и укреплять.

    Необходимо убеждать детей в том, что следует знать и выполнять правила дорожного движения, на улицах и дорогах быть внимательным и дисциплинированными.

    Помочь учителю в этой работе может система специально подобранных задач, решаемых на уроках физики.

    По степени трудности задачи не одинаковы, это позволяет дифференцировать работу учащихся, предлагая различные задания для самостоятельной работы на уроке и дома, проведение олимпиад, викторин. Решение «транспортных» задач не должно заканчиваться получением числового ответа. Следует обсудить ответ с учениками, проанализировать полученный результат.

    План - конспект урока.

    ПДД и законы физики.

    Цели:

    1. Отработать математические понятия, применяемые в формулах движения: скорость, время, пройденный путь;

    2. Совершенствовать навыки перевода единиц, применяемых в формулах на движение.

    3. Научить учащихся использовать полученные знания в повседневной жизни.

    4. Сформировать у учащихся знания, умения, навыки по здоровому образу жизни.

    5.Повторить с учащимися элементарные «Правила дорожного движения».

    Оборудование : плакаты «Дорожные знаки», правила дорожного движения, стенгазетами с соответствующей тематикой (кабинет оформляется за неделю до урока), презентация Power Point «Дорожные знаки»

    Ход урока

    I . Разбор задач (коллективная поисковая работа)

    Задача №1. Сколько времени потребуется водителю автомобиля, движущегося со скоростью 54 км/ч, чтобы обогнать стоящий на стоянке автобус длиной 12м? Почему опасно переходить дорогу, обходя автобус спереди? Средняя скорость пешехода- 1,5м/с.

    Решение:

    1). 54 км/ч=54000 м/3600 с =15 м/с

    2)12 м:15м/с = 0,8 с - время обгона автомобилем автобуса.

    3) 15м*0,8=1,2м - путь, проделанный пешеходом.

    Ответ: Люди, вышедшие из передней двери и начавшие переход спереди автобуса, могут попасть под колеса автомобиля, идущего в том же направлении.

    Задача №2. При ограничении скорости 40 км/ч автомобиль двигался со скоростью 50 км/ч. На сколько процентов он превысил скорость?

    Решение:

    1) 50 - 40=10 км/ч

    2) 10:40=1/4

    З) 1/4 * 100%=25%

    Ответ: Водитель превысил скорость на 25 %, это очень опасно для уличного движения.

    Задача №3. На расстоянии 40 м от пешехода движется автомобиль со скоростью 36 км/ч. Как должен поступить пешеход, которому нужно пересечь дорогу шириной 6 м? Скорость пешехода 1,5м/с.

    Решение:

    1) 36 км/ч=10м/с.

    2) 40м:10 м/с = 4с - время, которое потребуется автомобилю, чтобы поравняться с пешеходом.

    3) 1,5 м/с*4с-6м – путь, который может за это время пройти пешеход.

    Ответ: Анализируя, можно сделать вывод, что пешеход успевает пересечь дорогу. Но пешеходу следует помнить о том, что при переходе дороги могут возникнуть помехи его движению: он может поскользнуться, споткнуться, столкнуться со встречным пешеходом и т.п., следовательно, в этой ситуации безопаснее пропустить автомобиль.

    Задача №4. Какие места в районе школы следует считать наиболее опасными для движении пешеходов? Почему?

    Задача №5. Успеет ли водитель начать торможение, если на расстоянии 4 метров от него на дорогу неожиданно выбежал ученик нашей школы? Скорость машины 36 км/ч, время реакции водителя 1 секунда. (Нет, т. к. скорость машины 10 м/с).

    Задача №6 . Какие Дорожные знаки есть в районе нашей школы? Объясните их предназначение. (Презентация «Дорожные знаки»)

    II . Самостоятельная работа (по вариантам).

    Решить две задачи и к каждой задаче написать соответствующее правило дорожного движения,

    Вариант №1.

    1. Ученик переходит дорогу по зеленому сигналу светофора со скоростью 1,2 м/с. Ширина дороги - 15м. С двух сторон к переходу, не снижая скорости, приближаются два автомобиля со скоростью 36км/ч. Светофор горит 10с. В момент включения светофора расстояние от автомобилей до перехода составляло 100 м. Оцените ситуацию. Как должен поступить ученик?

    Решение:

    1) 36 км/ч =36000м/3600с= 10 м/с

    2) 100 м: 10 м/с =10 с - потребуется автомобилям, чтобы поравняться с пешеходным переходом.

    3) 1,2 м/с * 10 с =12м - путь, который может пройти пешеход.

    4) 15м> 12м

    Ответ: Ученик не успевает пересечь дорогу, он должен переждать на осевой линии или на островке безопасности.

    2. Выразите скорость 25 м/с в км/ч. Не будет ли эта скорость выше разрешенной в городе?

    Решение:

    1)25 м/с=25 м/с*3600/1000м=90 км/ч.

    2) 90 км/ч >60 км/ч.

    Ответ: Скорость будет выше разрешенной.

    Вариант №2 .

    1. Ширина проезжей части дороги 9 м. Скорость движения школьников 0,9 м/с. Успеют ли они все перейти пешеходный переход по зеленому сигналу светофора, если длина колонны школьников 18 м, сигнал горит 20 с? Как должны идти дети?

    Решение:

    1)18м+9м=27м-путь, который должен пройти последний школьник.

    2) 27м:0,9 м/с = 30 с - потребуется времени, чтобы вся колонна прошла через проезжую часть дороги.

    3) 30с> 20 с

    Ответ: Не успеют. Дети в колонне должны идти с флажком. Транспорт обязан пропустить колонну.

    2. Автомобиль движется так, что каждые 200 м проходит за 10 с. Нарушает ли водитель «Правила дорожного движения», если на обочине стоит знак ограничения скорости до 40 км/ч?

    Решение:

    1) 200: 10=20 м/с

    2) 20 м/с =20 м/с*3600с/1000= 72 км/ч - скорость автомобиля

    3) 72 км/ч > 40 км/ч

    Ответ: Водитель нарушил правила.

    (после самостоятельной работы, учащиеся говорят ответ и зачитывают выводы правила, которые они записали к каждой задаче).

    III . Домашнее задание.

    1. Задача: При сухой погоде тормозной путь автомобиля - 23м, а при гололеде он увеличивается до 69 м. Какую часть тормозной путь до гололеда составляет от тормозного пути во время гололеда? Во сколько раз увеличился тормозной путь? Как это можно учитывать водителю, пешеходу?

    Решение:

    1)23:69=23/69 =1/3 часть

    2) 69:23 = 3 (раза).

    Ответ: Водитель должен двигаться с меньшей скоростью, начинать торможение дальше от пешеходной дорожки, перекрестка. Пешеход должен переходить дорогу только в установленных местах и строго по разрешающему сигналу светофору

    2. Нарисовать маршрут дороги от дома до школы. На нем указать расположение всех встречающихся дорожных знаков. Объяснить их предназначение.

    Дополнительный материал к уроку.

    Приложение 1.

    А знаешь ли ты? Как родились ПДД.

    Пока человек ходил по земле, все было просто и ясно. Но стоило ему оседлать коня и сесть на облучок повозки, все сразу осложнилось. Одни, следуя в экипажах, ни за что не хотели уступать дорогу другим. Доставалось и пешеходам: то их собьет с ног быстро несущийся экипаж, то лихой кучер огреет зазевавшегося прохожего. Так появились первые пострадавшие и первые нарушители порядка на дороге.

    Прообразом современных ПДД стали указы царствующих особ строго соблюдать правила езды и хождения. Так, царица Анна Иоанновна пыталась навести порядок строгими мерами. В 1730 году она издала указ: «Извозчикам и прочим всяким чинов людям ездить со всяким опасением и осторожностью, смирно. А тех, кто не будет соблюдать сих правил, - бить кнутом и ссылать на каторгу».

    Скоро правила дополнились новыми положениями: «Когда случится подъехать к перекрестку, тогда ехать еще тише и осматриваться во все стороны», «на мостах через реки карет не обгонять». Еще позже появились указы, позволяющие ездить только по мостовым, а не по тротуарам. А в 1812 году в Москве уже действовали самые настоящие правила, ограничивающие скорость передвижения и указывающие место остановки экипажей.

    Когда на дорогах появились первые автомобили, на них поначалу ополчились все: и власти, и обыватели, и церковь, увидевшая в них победу науки над религией. Например, в Риме запрещалось ездить на автомобиле после 9 часов вечера. В Германии при встрече с лошадью надо было не только не остановиться, но и заглушить двигатель, чтобы «не пугать несчастных животных». В Англии «механическими повозками» должны были управлять, по крайней мере, 3 персоны. В городах перед механической повозкой должен был бежать человек с красным флагом, чтобы предупреждать тем самым об опасности. Сейчас и представить себе трудно, как это перед каждым движущимся автомобилем пустить пешехода, чтобы он бежал и подавал какой-либо сигнал.

    Про дорогу и улицу

    Слова «улица» и «дорога» - не «родственники» но, тем не менее, имеют немало общего. Значения этих слов в современном русском языке являются смежными: улица - это пространство между двумя рядами домов в населенном пункте. Дорога - это пространство для проезда или перехода. В городах улицы широкие, и дороги «исчезают» в проезжих частях (для транспорта) и тротуарах (для пешеходов). А в небольших деревнях (есть ведь и такие, где всего лишь одна улица!) улица, особенно если она узкая, может совпадать с дорогой. Поэтому эти слова нередко выступают как синонимы.

    Такое их употребление мы видим в диалектах русского языка и в отдельных славянских языках. Так, слово «улица» обозначает в некоторых диалектах дорогу, а слово «дорога» - улицу. В верхнелужицком языке «groha» значит и «дорога», и «улица». В чешском языке «ulica» - это не только «улочка», «переулок», но и «проход». Французское слово «rue» - улица сходно по происхождению c латинским ruga - «дорога»; итальянское «strada» означает «дорога, улица», польское «alega» - это «аллея, улица».

    Как же выглядят «метрики» наших слов?

    Слово «улица» было создано с помощью суффикса -иц- на базе существительного «-ула-», родственного слову «улей». Слово «дорога» произошло от праславянского «dorga», означавшего очищенное в лесу, пустое пространство. Оно было образовано с помощью суффикса -г- и основы -дор-.

    Как видим, слова «улица» и «дорога» хотя и не из одной семьи, но тем не менее близкие лексические товарищи, товарищи по одному значению и дальнейшей языковой судьбе.

    По материалам книги Н.М. Шанского «В мире слов»

    Кто придумал светофор

    Первый уличный светофор появился в Лондоне в 1868 году. Придумал его английский инженер Найт. Прототипом, по всей видимости, послужил железнодорожный светофор, который к тому времени уже достаточно давно применялся для регулирования железнодорожных перевозок. Прежде чем ввести светофор в действие, в газетах Лондона были опубликованы подробные правила, из которых люди впервые узнали, что означает зеленый цвет, а что - красный. Установленный перед зданием английского парламента, первый светофор был механическим: цветные сигналы менялись в нем с помощью системы приводных ремней. Для этого рядом служил - дежурил специальный полицейский.

    Вскоре устройство оснастили газовым фонарем, чтобы изменения цветов были видны и в темное время суток. Однако это нововведение оказалось роковым для судьбы первого уличного светофора. Фонарь однажды взорвался и смертельно ранил находившегося поблизости полисмена. С тех пор история светофора прервалась почти на полвека.

    Новое рождение автоматического регулятора уличного движения состоялось в 1914 году в американском Кливленде, а чуть позднее - в Чикаго и Нью-Йорке. Светофоры были, на сей раз электрическими, но так же, как и лондонский, имели лишь два сигнала - красный и зеленый. Желтый цвет появился только в 1918 году.

    В России первый светофор был установлен в 1924 году в Москве на пересечении улиц Кузнецкий мост и Петровка. С развитием техники постепенно внедрялось автоматическое управление. Так, в 1955 году в столице на Садовом кольце появилась первая «зеленая волна», состоящая из пяти светофоров: автомобиль, попадавший на первом светофоре на зеленый свет, беспрепятственно проезжал все остальные.

    Автоматический регулировщик

    Организация движения была проблемой задолго до появления автомобилей. Юлий Цезарь был, вероятно, первым правителем в истории, который ввел правила дорожного движения. Он, например, принял закон, по которому женщины не имели права управлять колесницами в Риме.

    С возникновением автомобилей появились первые регулировщики, которые стояли на дорогах и рукой показывали направление движения. Потом им выдали сигнальные фонари. Но они не могли решить всех проблем.

    В 1927 году два человека запатентовали «автоматического регулировщика». Один из светофоров, изобретенный Гарри Хау из Йельского университета, был установлен в Нью-Хейвене, штат Коннектикут, в апреле 1928 года.

    Этот механизм работал так: машина, подъезжая к такому указателю, давала сигнал в сигнальную будку, и оттуда исходила команда включить для подъехавшей машины разрешающий сигнал. Этот тип светофора, но только теперь уже с применением светового сигнала, существует и в наши дни.

    Чарльз Адлер в 1928 году также изобрел регулятор дорожного движения, в котором использовался микрофон для подачи сигнала в сигнальную будку. Водитель, видя красный свет, дул в рожок. Микрофон передавал звук в сигнальную будку, оттуда поступал ответный сигнал сменить цвет светофора. В наши дни существуют разные виды дорожных регуляторов, которые тоже реагируют на звук для переключения светофора.