Индикатор окончания заряда автомобильного аккумулятора своими руками. Схема индикатора заряда аккумулятора на светодиодах

аккумулятор заряд схема

Основная проблема, которая возникает при заряде аккумуляторов, состоит в поиске параметра, измерения которого позволили бы с достаточной точностью определить состояние полного заряда.

В ходе заряда герметичных щелочных аккумуляторов меняется несколько параметров: напряжение, температура, внутреннее давление. Характер их изменений в процессе заряда герметичного никель-кадмиевого аккумулятора изображен на рисунке 1. Эти параметры обеспечивают различную чувствительность и имеют разные ограничения при использовании. Характер изменения указанных параметров у никель-металлгидридных аккумуляторов похож, но они более чувствительны к перегреву при перезаряде.

Рис.1.

Заряд стандартным режимом обычно проводится в течение регламентированного времени. Контроль напряжения при такой стратегии заряда малоэффективен, так как при низких плотностях тока заряда напряжение в конце процесса (Uкон) меняется незначительно и контроль процесса по его величине, выбранной в соответствии с рекомендованной производителем как типичной для данного типа источника тока, может привести к недозаряду одних и перезаряду других аккумуляторов (в зависимости от их индивидуальных зарядных характеристик). Паспортная величина конечного напряжения паказывает только статистический параметр, а разброс его у аккумуляторов в партии может быть заметным. К тому же величина эта зависит от температуры и наработки аккумулятора.

При быстром заряде использование напряжения в качестве контрольного параметра оказалось более результативным. Это определяется изменением вида зарядной кривой. В этом случае нет надобности ориентироваться на конкретную величину предельного зарядного напряжения, нужно лишь установить момент достижения его максимальной величины. Для этого устройствами контроля периодически определяется величина dU/dt или d2U/dt2. Максимум зарядного напряжения наблюдается как правило при заряде до 110-120 % Сн.

В случаи прекращения заряда в этот момент, при последующем разряде в стандартном режиме удается снять около 95% номинальной емкости. Для обеспечения большего перезаряда (до 140-160 %) нужно либо необходимое время сохранять заряд тем же током, либо обеспечить переход к более безопасному режиму подзаряда меньшим током.

В настоящее время для контроля хода быстрого заряда чаще используется другой критерий: прерывание заряда производят после того, как напряжение аккумулятора уменьшится на ДU после достижения максимума. Это обеспечивает нужный уровень перезаряда аккумуляторов.

Такой контроль рекомендуется для быстрого заряда (в течение 1 ч) цилиндрических щелочных рулонных аккумуляторов, если изготовитель разрешает такой заряд для конкретного типа аккумуляторов. В литературе он называется детекцией -ДU. Величина -ДU для аккумуляторов разных производителей может составлять от 5-10 до 10-20 мВ, Для контроля заряда чаще предлагается использовать величину 10 мВ/аккумулятор при температуре заряда от 0 до 30 °С. При этом в начале заряда (в течение 5-10 мин) рекомендуется не проводить измерения напряжения источника тока во избежание срабатывания системы контроля из-за возможного скачка напряжения (и последующего его небольшого спада) после длительного хранения.

Другим параметром, который применяется при контроле заряда современных герметичных щелочных аккумуляторов, является температура. Контроль температуры более всего нужен при заряде никелъ-металлгидридных аккумуляторов. Температурный датчик устанавливается не на каждом аккумуляторе, а на одном из них в батарее. Понятно, что влияние конструктивных особенностей батареи и реализуемых в ней условий теплообмена делают контроль заряда по абсолютной величине температуры Т весьма проблематичным, так как непросто однозначно определить величину этого параметра. Специалисты компании GP, например, детально исследовали процесс заряда батареи емкостью 2,5 Ач током 0,5 С при температуре окружающей среды (Tокр) от 15 до 45 °С. Изучалось отключение при температуре батареи (Tбат), равной 55 и 60 °С. Было показано, что если температура окружающей среды выше 35 °С, то при Tбат = 55 °С имеет место существенный недозаряд. При Tбат=60 °С недозаряд несколько уменьшается. Увеличивать еще больше значение контролируемого параметра (Tбат > 60 °C) нельзя без риска увеличения опасности отказа аккумулятора.

Все производители как правило рекомендуют максимальную величину температуры при быстром заряде - не более 55 °С. Следует понимать, что при повышенных температурах окружающей среды избежать недозаряда при таком способе контроля зарядного процесса не получится. Более рациональным является контроль другого параметра: скорости изменения температуры (ДT/Дt), что позволяет при любой температуре окружающей среды диагностировать интенсификацию побочных процессов, которая имеет место при перезаряде. Величина ДT/Дt, при которой различные производители рекомендуют отключать герметичные щелочные аккумуляторы, находится в интервале от 1 до 2 °С/мин при токе заряда 1С и 0,8 °С/мин, если ток меньше.

Большая часть производителей полагает, что наилучшие результаты достигаются при контроле заряда по двум критериям (оценка -ДU и ДT/Дt) одновременно. Такой метод контроля универсален как для аккумуляторов разных типов, так и для разного уровня их заряженности. Следует заметить, что второй из этих параметров обеспечивает более благоприятные условия работы аккумуляторов при длительной эксплуатации.

Найден еще один электрический параметр, который по величине значительно больше изменений напряжения. Этот параметр - реакция источника тока на тестовый сигнал переменного тока.

Для контроля степени заряженности свинцово-кислотных аккумуляторов можно использовать напряжение разомкнутой цепи, которое меняется от 2,05-2,15В/ак при заряженном состоянии (в зависимости от концентрации кислоты) до 1,95-2,03 В/ак после полного разряда. Эта зависимость показана на рисунке 2.

Рис.2.

При контроле заряженности свинцово-кислотного аккумулятора в ходе заряда, заряд считается завершенным если ток заряда (при неизменном стандартном напряжении заряда) остается неизменным в течении 3-х часов.

При заряде литий-ионных аккумуляторов ориентируются также на напряжение аккумулятора. В начальный период, когда только появились литий-ионные аккумуляторные батареи, использующие графитовую систему, требовалось ограничение напряжения заряда из расчета 4,1 В на элемент. В настоящее время литий-ионные элементы можно заряжать до напряжения 4,20 В. Допустимое отклонение напряжения составляет всего лишь около ±0,05 В на элемент. Рисунок 3 отображает стандартный процесс заряда литий-ионного аккумулятора.


Рис.3.

ЭТАП 1 - Через аккумулятор протекает максимально допустимый ток заряда, пока напряжение на нем не достигнет порогового значения. ЭТАП 2 - Максимальное напряжение на аккумуляторе достигнуто, ток заряда постепенно снижается до тех пор пока он полностью не зарядится. Момент завершения заряда наступает когда величина тока заряда снизится до значения 3% от начального. ЭТАП 3 - Периодический компенсирующий заряд, проводящийся при хранения аккумулятора, ориентировочно через каждые 500 часов хранения.

Аккумулятор - важнейшая вещь в любом автомобиле. Именно этот элемент дает пусковой ток на стартер. Именно благодаря аккумулятору осуществляется быстрый и беспроблемный запуск двигателя. Но так бывает не всегда. Чтобы не испытывать трудностей с пуском, нужно периодически проверять его уровень заряда. Сделать это можно несколькими способами.

Как проверить заряд аккумулятора автомобиля в домашних условиях? Ответ на этот вопрос вы узнаете далее в нашей статье.

Методы

Существует несколько способов того, как проверить заряд аккумулятора автомобиля:

  • по индикатору;
  • при помощи нагрузочной вилки;
  • мультиметром;
  • путем замера плотности электролита.

Каждый из них имеет свои особенности. Давайте рассмотрим перечисленные методы подробнее.

Встроенный индикатор

Большинство импортных аккумуляторов имеют встроенный индикатор, по которому можно проверить заряд. Впервые такие АКБ появились в Японии. Затем подобную фишку стали практиковать европейские производители.

В чем заключается его суть? На крышке АКБ имеется прозрачное окошко (некий глазок). Если посмотреть на него, то можно увидеть, что он окрашен в зеленый цвет. Но так бывает не всегда. Зеленый оттенок в окошке будет только в том случае, если аккумулятор полностью заряжен. Если же окошко прозрачное или белое, значит, АКБ потеряло часть заряда. Самый страшный случай - черное окошко. В таком случае аккумулятор сел «в ноль», и его нужно срочно зарядить.

К сведению, это один из самых простых способов того, как проверить заряд аккумулятора автомобиля без вольтметра и прочих приспособлений. Ведь все, что вам необходимо, - открыть капот и заглянуть в то самое окошко. Но стоит отметить, что такой глазок есть не на всех аккумуляторах (особенно, если дело касается отечественных). Поэтому чтобы определить уровень заряда, нужно знать и другие методы.

Нагрузочная вилка

Это, пожалуй, самый профессиональный способ проверки состояния аккумулятора. Обычно такой метод используется на СТО. В чем его суть? Устройство подключается к клеммам батареи и дает ток короткого замыкания.

То есть нагрузочная вилка имитирует работу стартера и показывает, на сколько вольт проседает аккумулятор при попытке водителя завести мотор. На сегодняшний день это самая точная схема проверки состояния АКБ. Чтобы правильно считывать показания, помните, что после нагрузки напряжение на аккумуляторе должно быть не менее 10 Вольт. Если же батарея проседает до 9 и ниже, значит, она уже слабая. Такой аккумулятор будет быстро разряжаться зимой.

Используем мультиметр

Это незаменимый прибор, который должен быть у каждого автомобилиста. Позволяет не только проверить уровень напряжения АКБ, но и сопротивление датчиков, нагрузку бортовой сети в режиме реального времени и много других важных параметров. Приобрести данный аппарат можно за 300-700 рублей, что в 2-3 раза дешевле нагрузочной вилки. Пользоваться данным прибором очень легко.

Как проверить заряд аккумулятора автомобиля мультиметром? Для начала его необходимо собрать. Выполняем следующие действия:

  • Подключаем два провода с положительной и отрицательной полярностью в соответствующие разъемы.
  • На концах проводов будут щупы. Их мы прикладываем к
  • Предварительно выставляем прибор в режим замера напряжения и устанавливаем поворотный переключатель на 20 Вольт.
  • Подключаем выводы мультиметра к батарее и смотрим на результат. При этом зажигание автомобиля должно быть выключено.

Считываем данные с мультиметра

Какой показатель является нормальным для батареи? Специалисты отмечают, что полностью заряженный аккумулятор должен выдавать напряжение не менее 12,5 Вольт. В случае, если мультиметр показал цифру ровно 12В, значит, батарея разряжена наполовину. О том, что аккумулятор нужно срочно зарядить, свидетельствует показатель в 11,5 Вольт и ниже.

Электролит

Существует еще один способ того, как проверить заряд аккумулятора автомобиля своими руками. Особенно он актуален в преддверии зимы. Как известно, с падением температуры, плотность электролита уменьшается. Соответственно падает заряд и производительность батареи. Как проверить заряд аккумулятора автомобиля? Для этого нам понадобится ареометр. Ниже представлена подробная инструкция:

  • Итак, открываем капот и при помощи минусовой отвертки откручиваем поочередно «банки» АКБ. Их всего 6.
  • Погружаем наш ареометр внутрь и ждем, пока он не заполнится электролитом.
  • Далее достаем наружу устройство и смотрим на показания.
  • По истечению небольшого времени, поплавок всплывет до нужного уровня. На шкале будет несколько делений. Нормальным считается показатель в 1,23-1,27 грамма на кубический сантиметр. Если плотность электролита составляет 1,2 грамма, значит, аккумулятор разрядился примерно на четверть. О глубоком разряде свидетельствует показатель в 1,1 и ниже грамма на кубический сантиметр.

Также стоит проверить сам уровень электролита в каждой из «банок». Если он недостаточный, его следует возобновить. Сделать это можно дистиллированной водой (ею же разбавляют и охлаждающую жидкость).

Не игнорируйте недостаточный уровень электролита в аккумуляторе. Это может стать причиной частой потери заряда и осыпания свинцовых пластин. В результате, АКБ придет в негодность, а при любых попытках подзарядки жидкость будет кипеть.

Как проверить заряд аккумулятора автомобиля зарядным устройством?

На каждом ЗУ имеется шкала, определяющая напряжение батареи. При отсутствии мультиметра, нагрузочной вилки и ареометра, можно воспользоваться и им. Как проверить заряд аккумулятора автомобиля таким способом?

Все очень просто - подключаем выводы ЗУ к клеммам батареи и нажимаем на проверочную кнопку. Подключать к розетке прибор не стоит - в таком случае он подаст зарядку, а показания будут не ниже 13 Вольт.

Можно ли заряжать дома?

При отсутствии гаража допускается возможность подзарядки АКБ в квартире. Но делать это лучше на балконе. Во время этого процесса электролит выделяет вредный для человека сернистый газ и хлористый кислород. При его вдыхании возможно головокружение и тошнота. Поэтому заряжаем в максимально отдаленном и хорошо проветриваемом помещении. Также следите за состоянием электролита.

Нельзя допускать, чтобы аккумулятор кипел. Это снижает его ресурс. В среднем легковой 60-амперный аккумулятор заряжается за 7-8 часов. При этом на ЗУ нужно выставлять минимальную силу тока. Для АКБ вредны стрессовые нагрузки. Если батарея долго заряжается, или одна из банок закипела через полчаса, значит, она пришла в негодность.

В заключение

Итак, мы выяснили, как проверить заряд аккумулятора автомобиля. Один из самых простых способов - это мультиметр. Что касается ареометра, это уже профилактическая мера. Да, таким прибором можно измерить «остаток жизни» АКБ. Но, в большей части, он является диагностическим прибором (равносильно, как и нагрузочная вилка). Поэтому каждый аппарат хорош по-своему.

Никель-кадмиевые аккумуляторы сегодня широко применяют в бытовой технике. Учитывая, что правильная эксплуатация позволяет продлить срок "жизни" этих дорогих компонентов, весьма актуален контроль за состоянием аккумуляторов и, особенно, за процессом зарядки в целях предотвращения их перезарядки.

На радиорынках и прилавках специализированных магазинов можно встретить довольно много моделей ручных фонарей, питающихся от никель-кадмиевых аккумуляторов. Особенно популярны фонари "Универсал УН-0-002" отечественного производства. Они имеют малые габариты, удобный корпус, для питания лампы используется батарея из трех аккумуляторов Д-0.26Д. Фонарь снабжен встроенным сетевым зарядным устройством (ЗУ), выполненным по стандартной схеме с гасящим конденсатором (рис. 1).

В этих фонарях (как и в других подобных) оценка степени разряженнос-ти аккумуляторов производится буквально "на глаз" по яркости свечения лампы, а контроль зарядки - по времени, в течение которого фонарь включен в сеть. Известно, что никель-кадмиевые аккумуляторы не рекомендуется разряжать до напряжения ниже 1 В. А лампа фонаря (3,5 В, 150 мА) вполне сносно светит и при напряжении, меньшем 3 В (три полностью разряженных аккумулятора), не говоря уже о лампе на 2,5 В, которую можно установить в фонарь для получения более яркого света: правда, при этом повысится потребляемый от аккумуляторов ток. Однако еще более опасна перезарядка аккумуляторов, которая вообще ничем не контролируется. Между тем частые перезарядки, как и переразрядки, сильно сокращают срок их службы.

Кроме того, когда фонарь включен в сеть, не понятно, идет ли процесс зарядки, например, если контакт в розетке не очень надежен, поскольку лампа на столь малую прибавку тока почти не реагирует. Поэтому при зарядке аккумуляторов лампа должна быть выключена - ведь она потребляет примерно 150 мА, а зарядный ток составляет всего около 14 мА. Поскольку к приобретаемым фонарям, как правило, никакой инструкции не дают, следует помнить, что полностью разряженные (до напряжения 1 В) аккумуляторы заряжаются ЗУ в течение примерно суток.

Таким образом, пришлось разработать устройство для контроля процессов зарядки и разрядки аккумуляторов. При приемлемой точности и температурной стабильности оно работает от низкого напряжения питания и помещается в корпусе фонаря. В связи с тем что приборы, выполненные на КМОП-мик-росхемах широкого применения, имеют сравнительно большие габариты и требуют минимального напряжения питания - 3 В, что не позволяет индицировать глубокую разрядку, устройства были собраны на транзисторах.

Наиболее просто оказалось ввести в фонарь индикацию тока зарядки аккумуляторов. Для этого потребовалось всего лишь включить последовательно с диодом VD2 или вместо него светоди-
од, желательно зеленого цвета, в аналогичной полярности. Он довольно ярко светится в процессе зарядки, так как через него течет весь зарядный ток. Этот светодиод лучше всего вывести излучающей поверхностью наружу вблизи встроенной сетевой вилки так, чтобы при навинченной крышке он был закрыт ею.

Процесс зарядки можно контролировать с помощью простого устройства, схема которого изображена на рис. 2. Оно представляет собой аналог динис-тора, собранный на биполярных транзи-

сторах. Его подключают параллельно диоду VD1 (см. рис. 1). Когда напряжение на заряжаемых аккумуляторах превысит установленный уровень, устройство шунтирует зарядную цепь, защищая аккумуляторы от перезарядки. При этом светодиод, индицирующий протекание зарядного тока, медленно гаснет, а вместо него начинает светиться другой (HL1, его лучше взять красного свечения), что и будет свидетельствовать об окончании зарядки.

Налаживать устройство следует так: разрядив аккумуляторы до напряжения 1 В на каждом из них, включают фонарь на зарядку. Движок переменного резистора устанавливают в то крайнее положение, в котором красный светодиод не светится. Далее по истечении 30 часов зарядки нужно, не отключая фонаря от сети, проконтролировать напряжение на аккумуляторах. Если оно равно или чуть больше 4,3 В, можно считать, что зарядка окончена. В этот момент движок переменного резистора устанавливают в такое положение, чтобы ярко светился красный светодиод, а зеленый при этом почти погас (полностью он все-таки не может погаснуть), причем важно заметить именно этот порог "притухания" светодиода, индицирующего прохождение зарядного тока.

Таким образом, ток теперь будет снижаться в процессе зарядки (ограничение тока станет заметным уже через 12 часов после начала зарядки), что позволит избежать перезарядки и повышенного тока в конце зарядки. Единст-

венный недостаток устройства состоит в некотором увеличении времени зарядки батареи, примерно до двух суток, зато фонарь можно оставить включенным в розетку и на неделю без негативных последствий. Если же возникает необходимость очень быстрой зарядки аккумуляторов, следует применять специальное зарядное устройство.

Для контроля за разрядкой разработано устройство (рис. 3), основа которого - дифференциальный усилитель на двух транзисторах с индикаторными светодиодами зеленого (HL1) и красно-

го (HL2) цвета, показывающими, соответственно, нормальное и пониженное напряжение на аккумуляторах.

Это устройство включают параллельно лампе после выключателя, поскольку контролировать состояние аккумуляторов необходимо под нагрузкой. Потребляемый ток - около 5 мА. Такой, казалось бы, большой ток составляет менее 4 % от общего потребления энергии, что с лихвой окупается удобством в работе. Емкости же трех полностью заряженных аккумуляторов Д-0.26Д хватает для питания лампы фонаря током 150... 170 мА в течение почти полутора часов, так что потеря емкости на индикацию составит всего несколько минут.

Принцип работы устройства состоит в сравнении напряжения на базах транзисторов - когда оно одинаково, светятся "вполнакала" оба светодиода, а при весьма небольшой разнице в ту или другую сторону один из светодио-дов гаснет, а другой начинает светиться в полную силу. Поскольку на базе транзистора VT2 напряжение стабилизировано диодами VD1 и VD2, то при изменении питающего напряжения изменяется напряжение на базе транзистора VT1, что приводит к свечению зеленого светодиода, когда напряжение окажется выше некоторого предела, и красного, когда напряжение будет ниже.

Установить этот предел проще всего так. Разряжают аккумуляторы, включив лампу и непрерывно контролируя напряжение вольтметром, до 3 В. Затем, не отключая лампы, движок переменного резистора R2 устанавливают в такое положение, когда оба светодиода светятся вполсилы. В процессе эксплуатации появление свечения красного светодиода будет означать, что в ближайшее время (примерно полчаса) следует ожидать полного истощения заряда в аккумуляторах - фонарь следует поставить на зарядку.

Вообще, налаживание устройств для контроля зарядки и разрядки аккумуляторов лучше проводить одновременно.

Переключение с зеленого светодиода на красный происходит при изменении напряжения на 0,5 В (3,25 В - начало свечения красного светодиода, 2,75 В - полное погасание зеленого). Если напряжение питания станет меньше 2 В, индикация полностью пропадает - впрочем, лампа в этот момент уже практически не светится.

Зеленый светодиод можно вообще не ставить - работу устройства это не нарушит. Но все же рекомендую его установить, так как по балансу свечения двух индикаторов удобнее определять порог срабатывания. Потребление же тока при этом не изменится. На самом деле выводить наружу (вблизи выключателя) следует только красный светодиод, зеленый же лучше оставить внутри фонаря, слегка развернув его так, чтобы при разобранном фонаре во время налаживания были видны обе светящиеся "точки". Линзу на красном свето-диоде лучше спилить надфилем, чтобы она не выступала за пределы корпуса фонаря, и отполировать.

Поскольку ЗУ фонаря гальванически связано с сетью, при монтаже и налаживании устройства следует соблюдать осторожность. Для предотвращения поражения электрическим током необходимо, чтобы корпус фонаря был полностью собран. Если включить фонарь в сеть без аккумуляторов или с аккумуляторами, имеющими плохой контакт, весьма вероятен выход из строя диода VD1 (см. рис. 1).

г. Шахты Ростовской обл.

В современной практике еще встречаются автомобили, на которых нет ни бортового компьютера, ни табло с индикатором заряда аккумуляторной батареи. Передвижение без индикатора чревато полной остановкой двигателя и невозможностью в дальнейшем запустить его.

Индикатор заряда аккумулятора выполняет две функции: показывает зарядку тока аккумулятора от генератора и информативно величину заряда АКБ. Существует несколько способов устранить эту недоработку у автомобиля. Один из них самый простой, сделать своими руками устройство показывающее зарядку батареи.

В доступных источниках есть много предложений изготовления цифровой цепи тока такого устройства. Оно имеет достаточно простой вид. Для этого нужны навыки по пайке радиодеталей и желание собрать устройство своими руками. Выбрать светодиод, стабилитрон, макетную плату и резисторы. Схема индикатора заряда АКБ приведена на рисунке ниже.

Принцип работы

Светодиодный индикатор благодаря наличию трех цветов светодиодов может показывать различные фазы зарядки тока. Начало зарядки. Рабочую середину. Предупреждение окончания процесса. Это схема дает нам возможность контролировать весь рабочий цикл батареи.

Спаять детали своими руками несложно, но для начала сделай проверку тестером. Если все детали исправны можно сделать сборку по схеме. Прозванием тестером светодиодный выход. Определяем выход низкого напряжения тока от шести до одиннадцати вольт.

Это светодиод красного цвета. От одиннадцати до тринадцати вольт – желтый. Более тринадцати — будет светодиод зеленого цвета. Схема имеет простой набор деталей и работает надежно.

Интересно! АКБ выдает на светодиод определенное напряжение тока. Он загорается. Так мы определяем начало и окончания заряда АКБ.

Если у вас нет каких, либо комплектующих, то нужно посмотреть в интернете аналогичные схемы и своими руками доработать устройство. Схема будет также показывать надежно индикацию заряда тока батареи.

Для автомобиля важно, чтобы схема работала не постоянно, а только когда водитель находился за рулем. Рекомендуется после окончания работы своими руками полученное устройство смонтировать под рулевым колесом и соединить с замком зажигания. В этом случае индикатор будет работать только при включенном зажигании автомобиля.

Мы видим, что после окончания работ, своими руками можно создать удобный и необходимый для надежной эксплуатации автомобиля индикатор заряда батареи. Себестоимость такого изделия будет не высокой.

Важно! Надежность индикатора и удобность его размещения позволяет эффективно устранить не доработку конструкторов – производителей автомобилей.

С одной стороны любое устройство, будь то транспортное средство или простая кухонная утварь, кажется совершенной и доработанной с технической точки зрения. Не требующей вмешательства человеческой мысли и грамотных рук.

С другой, всегда найдутся грамотные «Кулибины», для которых это устройство кажется не совершенным и требует усовершенствования и технической доработки.

На этом и строится прогрессивный технический прогресс. Вроде простая, но при этом жизненно необходимая наглядная индикация процесса зарядки аккумуляторной батареи автомобиля, не спроектированная конструкторами нашла свою простую разработку простыми почитателями мира науки и техники.

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений - от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать .

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный - чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом - переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше - тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко - между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации - 3 мА, при выключенном светодиоде - 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 - разрешено, 0 - запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector"ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD , TCM809TENB713 , MCP103T-315E/TT , CAT809TTBI-G ;
  • на 2.93V: MCP102T-300E/TT , TPS3809K33DBVRG4 , TPS3825-33DBVT , CAT811STBI-T3 ;
  • серия MN1380 (или 1381, 1382 - они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка "1" в обозначении микросхемы - MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог - КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения - чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую "моргалку" на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза - коротка вспышка - опять пауза). Это позволяет снизить потребляемый ток до смешных значений - в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом - всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы - инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 - 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914 :

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на "землю", можно перевести ее в режим "точка". В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения , т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339 .

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке .

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют ), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 - это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, .

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот - в качестве индикатора заряда.