Нельзя построить вечный двигатель второго рода. Колесо с неуравновешенными грузами

Давно установлено, что изобретение вечного двигателя невозможно. В широком смысле, под вечным двигателем подразумевают механизм, безостановочно движущий сам себя. Но это далеко не достаточное определение. Благодаря многовековым бесплодным попыткам создания чудо-машины сегодня можно определить точно само понятие «вечного двигателя» и причины его неосуществимости. Более того, такие попытки оставили значительный след в истории и подтвердили существование важнейших законов физики. Каких, рассмотрим и проанализируем ниже.

Определение и классификация вечных двигателей

Итак, вечный двигатель, как уже известно - устройство воображаемое. По характеру совершаемой работы можно классифицировать следующим образом:

  1. Вечный двигатель первого рода (физический \ механический, гидравлический, магнитный) - непрерывно действующая машина, которая, будучи запущенной один раз, совершает работу без получения энергии извне. Это устройства механического характера, принцип действия которых основывается на использовании некоторых физических явлений, например, на действии силы тяжести, законе Архимеда, капиллярных явлениях в жидкостях.
  2. Вечный двигатель второго рода (естественный) - тепловая машина, которая в результате совершения цикла полностью преобразует тепло, получаемое от какого- либо одного «неисчерпаемого» источника (океана, атмосферы и т. п.), в работу. Связываются с циклически повторяющимися природными явлениями или с принципами небесной механики.

Такая классификация является распространенной и встречается в старой научной литературе. У более поздних исследователей существует еще одно определение. Оно исходит из представления об идеальной машине, работающей без потерь и превращающей всю сообщенную энергию в полезную работу или в какой-либо другой вид энергии.

К этим определениям ученые разных времен шли долгим путем. Они подвергали их обстоятельному анализу и были единодушны далеко не всегда. Проблема заключалась в том, можно ли считать вечным двигателем только ту машину, которая, будучи собрана полностью, немедленно начнет работать сама по тебе, или допустимо сообщить устройству начальный двигательный импульс. Спор велся и о том, относится ли к основным признакам вечного двигателя условие, чтобы он, будучи приведен в движение, одновременно совершал некоторую полезную работу.

Причины возникновения идеи создания

Первое упоминание о вечном двигателе относится к 1150 г. Но означает ли это, что античные механики не интересовались вечным движением? Наоборот, это являлось одной из тех традиционных проблем, которым в связи с исследованием физических явлений наука уделяла много внимания. Но при исследовании условий, определяющих круговое движение тел, греки пришли к выводам, теоретически исключающим всякую возможность существования на Земле искусственно созданного вечного движения. Например, Аристотель утверждал, что движение тел ускоряется по направлению к ее центру. О телах с действительно круговым движением он пишет: «Они не могут быть ни тяжелыми, ни легкими, так как не способны приближаться к центру или удаляться от него естественным или вынужденным образом». Такому условию удовлетворяют только небесные тела.

Но родоначальником идеи вечного двигателя считают индийского поэта, математика и астронома Бхаскара Ачарью (1114-1185), описавшего в своем стихотворении некое вечно двигающееся колесо. Заметим, что за основу взято тело круглой формы. Согласно древнеиндийской философии, регулярно повторяющиеся события, составляющие круговой цикл, являются для него символом вечности и совершенства. То есть прародители идеи вечного движения были мотивированы не практическими, а религиозными потребностями. Своего апогея идея вечного двигателя достигает в средние века в Европе, в период интенсивного строительства храмов, кафедральных соборов и княжеских дворцов, и тогда уже создателей, конечно, интересует практическое применение машины.

Некоторые модели вечных двигателей первого рода

Колесо с неуравновешенными грузами

Рисунок 1

Рисунок 2

Рисунок 3

Вот модель вечного двигателя Бхаскары (Рис. №1) с прикрепленными наискось по внутренней стороне окружности длинными узкими сосудами, наполовину заполненными ртутью. Бхаскара обосновывает вращение колеса следующим образом: «Наполненное так жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе».

Еще две модели, аналогичные по принципу действия, изобретенные в средневековой Европе. Роль сосудов, частично наполненных ртутью, играют выпукло­вогнутые секторы внутри колеса, внутри которых находятся тяжелые шары (Рис. №2) или подвижно закрепленные на внешней части колеса стержни с грузами на концах (Рис. №3).

Принцип действия данных двигателей заключается в создании постоянного неравновесия сил тяжести на колесе, вследствие которого колесо должно вращаться. Рассмотрим, почему этот расчет не оправдывается на примере обычного колеса. Здесь предполагается, что работу совершает сила тяжести, то есть в нормальных условиях (при небольших расстояниях и вблизи поверхности Земли) она постоянна и направлена всегда в одну и ту же сторону.

Рисунок 4

F T - вес груза, F P - сила, с которой рычаг воздействует на шарнир (компенсируется силой реакции опоры), F B - поворачивающая сила, R - расстояние от шарнира (оси поворота) до траектории центра масс груза.

Когда рычаг стоит строго вертикально вверх, вес груза передается на шарнир и компенсируется реакцией опоры. Сила направлена по нормали к окружности, тангенциальная составляющая

отсутствует, значит, момент сил равен нулю. Это положение называется верхней мёртвой точкой (ВМТ). Если рычаг отклоняется, реакция опоры уже не компенсирует вес, появляется тангенциальная составляющая силы, а нормальная начинает уменьшаться. Так будет продолжаться только до тех пор, пока рычаг не примет горизонтальное положение. Когда момент сил достигнет максимального значения, рычаг снова начнет действовать на груз, нормальная сила поменяет свой знак относительно рычага. Тангенциальная сила начнёт уменьшаться, до момента, когда рычаг не окажется в положении вертикально вниз (нижняя мёртвая точка (НМТ)).

Таким образом, как видно из Рис. №4, половину рабочего цикла груз ускоряется, двигаясь из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ), и половину - замедляется. Сделав несколько оборотов, колесо с неуравновешенными грузами достигнет состояния равновесия.

Цепь на наклонной плоскости

Рисунок 5

Еще один тип механических вечных двигателей - тяжелая цепь, переброшенная более длинной стороной через систему блоков. Теоретически предполагалось, что часть, на которой находится большее количество звеньев, начнет соскальзывать с наклонной плоскости, вследствие чего замкнутая цепь будет беспрерывно двигаться. Однако известно, что цепь будет покоиться. Этот тип двигателей интересен в первую очередь тем, что из невозможности его вечного движения инженер, механик и математик Симон Стевин (1548-1620) доказал закон равновесия тела на наклонной плоскости. Одна цепь тяжелее другой во столько же раз, во сколько раз большая грань (АВ на Рис.№5) призмы длиннее короткой (ВС на Рис.№5). Отсюда следует, что два связанных груза уравновешивают друг друга на наклонных плоскостях, если их массы пропорциональны длинам этих плоскостей.

Похожий по принципу механизм (Рис. №6): тяжелая цепь перекинута через колеса так, что правая ее половина всегда длиннее левой. Следовательно, она должна падать вниз, приводя цепь во вращение. Но цепь в левой части натянута отвесно, а правая - под некоторым углом и изогнуто. Аналогично вечное движение и этого механизма невозможно.

Рисунок 6

Гидравлический вечный двигатель с винтом Архимеда

В подавляющем большинстве вечных гидравлических двигателей изобретатели пытались использовать известный со времен Древней Греции механизм - винт Архимеда - полую трубку со спиралевидной плоскостью внутри, предназначенную для подъема воды из сосуда в сосуд наибольшей высоты.

Рисунок 7

Жидкость из сосуда, поднимается фитилями сначала в верхний сосуд, оттуда другими фитилями еще выше, верхний сосуд имеет желоб для стока, которое падает на лопатки колеса, приводя его во вращение. Оказавшаяся в нижнем ярусе жидкость снова поднимается по фитилям до верхнего сосуда. Таким образом, струя, стекающая по желобу на колесо, не прерывается, и колесо вечно должно находиться в движении (Рис. №7).

Только колесо этой машины никогда не станет вращаться, поскольку в верхнем сосуде не окажется воды. Это произойдет потому, что капиллярные силы вызванные искривлением поверхности жидкости, хотя и позволяют преодолеть силу тяжести, поднимая жидкость в ткани фитиля, но они и удерживают ее в порах ткани, не позволяя ей вытечь из них.

Сосуд Денни Папена

Рисунок 8

Проект гидравлического вечного двигателя Денни Папена - сосуд, сужающийся в трубку и загнутый таким образом, что свободный конец трубки с меньшим радиусом расположен в пределах большого «горла» сосуда (Рис. №8). Автор предполагал, что вес воды в более широкой части сосуда будет превосходить вес жидкости, находящейся в трубке, в более узкой части. Таким образом, должна была происходить циркуляция жидкости за счет разности давлений. На самом деле в данном случае работает основной закон гидростатики: давление, оказываемое на жидкость, передается без изменения по всем направлениям. Поверхность жидкости в тонкой трубке установится на том же уровне, что и в сосуде, как в любых сообщающихся сосудах.

Ранее это двигателя были предложены похожие сосуды, иначе ориентированные в пространстве. В них за основу брался принцип действия сифона: в нем (в изогнутой трубке с коленами разной длины, по которой жидкость поступает из сосуда с более высоким в сосуд с более низким уровнем жидкости) работа, затрачиваемая на подъем жидкости, производится атмосферным давлением. В то же время, чтобы жидкость могла протекать через сифон, максимальная высота его изгиба не должна превосходить высоту столба жидкости, уравновешиваемого давлением внешнего воздуха. Для воды эта высота при нормальном барометрическом давлении составляет примерно 10 м. - этот факт не учитывался и приводил к неверным выводам о вечном движении такого двигателя.

Другие гидравлические двигатели

Рисунок 9

Среди множества проектов вечного двигателя было немало основанных на законе Архимеда. Один из таких проектов выглядит следующим образом: высокий сосуд (20 м), наполненный водой, имеет расположенные на одной грани в разных ее концах шкивы, через которые перекинут прочный бесконечный канат с четырнадцатью закрепленными полыми ящиками кубической формы. Ящики одинаковы, равноудалены, водонепроницаемы и имеют стороны в 1 м (Рис. №9).

Действительно, ящики, находящиеся в воде, будут стремиться всплыть вверх. На них действует сила, равная весу воды, вытесняемой ящиками.

Но даже при условии, что данный канат бесконечен, эффект не оправдывается, потому что чтобы канат вращался, ящики должны входить в сосуд именно со дна, а для этого они должны преодолеть давление столба воды, которое окажется значительно больше силы Архимеда.

Рисунок 10

Упрощенный вариант вечного двигателя гидравлического типа (Рис.№10), идея которого исходит из грубого нарушения толкования закона Архимеда. Погруженная в воду часть деревянного барабана, согласно закону Архимеда, подвергается действию выталкивающей силы. Конечно, колесо вращаться не будет, потому что сила будет направлена не вверх (как предполагалось изобретателем), а к центру колеса.

Магнитный вечный двигатель

Рисунок 11

Несложная, но оригинальная модель вечного двигателя с магнитами. К шаровому магниту, расположенному на стойке, ведут два наклонных желоба: один прямой, установленный выше, другой изогнутый (Рис. №11). Железный шарик, помещенный на верхний желоб, будет притягиваться магнитом, затем на пути он попадет в отверстие, скатится по нижнему желобу и снова перейдет на верхний желоб.

Однако, если магнит достаточно силен, чтобы притянуть шарик от нижней точки, то он не даст ему провалиться через отверстие, расположенное совсем рядом. Если же, наоборот, сила притяжения будет недостаточна, то шарик не притянется вовсе.

Вечный двигатель первого рода в противоречии с законом сохранения энергии

Окончательное утверждение закона сохранения энергии в 40-70 годы XIX века произошло на основе работ Сади Карно, Роберта Майера, Джеймса Джоуля и Германа Гельмгольца, которые показали связь между различными формами энергии (механической, тепловой, электрической и др.). Закон сохранения энергии формулируется в следующем виде: в изолированной системе энергия может переходить из одной формы в другую, но общее количество ее остается постоянным.

Как правило, невозможность вечного двигателя рассматривают как следствие закона сохранения энергии. Рассуждения Майера и опыты Джоуля доказали эквивалентность механической работы и теплоты, показав, что количество выделяемой теплоты равно совершенной работе и наоборот, формулировку же в точных терминах закону сохранению энергии первым дал Гельмгольц. В отличие от своих предшественников, он связывал закон сохранения энергии с невозможностью существования вечных двигателей. Принцип невозможности вечного двигателя был положен Майером и Гельмгольцем в основу анализа различных превращений энергии. Макс Планк в работе «Принцип сохранения энергии» сделал специальный акцент на эквивалентности (а не причинно-следственной связи) принципа невозможности вечного двигателя и принципа сохранения энергии.

В термодинамике исторически закон сохранения формулируется в виде первого начала термодинамики: изменение внутренней энергии термодинамической системы при переходе ее из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход, т. е. Q = ΔU + A. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Вечные двигатели второго рода

Классический вечный двигатель второго рода предусматривает возможность накопления тепла за счет работы, затраты которой меньше полученного тепла, и использования части этого тепла для повторного совершения работы в новом цикле. Таким образом, должен образоваться избыток работы. Другой вариант этого двигателя подразумевает упорядочение хаотического теплового движения молекул, в результате чего возникает направленное движение вещества, сопровождаемое понижением его термодинамической температуры. Широко известных проектов таких двигателей изобретено не так много, как, например, двигателей первого рода, и информация о них не достаточна для описания. Подавляющее большинство идей таких машин являются абсурдными и противоречивыми, либо относятся к классу мнимых вечных двигателей (по сути, не являются вечными), обладают низким КПД.

Сформулированное Рудольфом Клаузиусом второе начало термодинамики однозначно утверждает: невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Что также означает, что в замкнутой системе энтропия при любом реальном процессе либо возрастает, либо остается неизменной (т. е. ΔS ≥ 0). Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы (без изменения состояния других тел) означала бы возможность реализации вечного двигателя второго рода, работа которого не противоречила бы закону сохранения энергии. Например, работа двигателя корабля за счет охлаждения воды океана (доступного и практически неисчерпаемого резервуара внутренней энергии) не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит второму началу термодинамики. В реальном тепловом двигателе процесс превращения теплоты в работу сопряжен с передачей определенного количества теплоты внешней среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внешняя среда нагревается, что находится в согласии со вторым началом термодинамики.

Мнимый вечный двигатель

Рисунок 12

В 60-х гг. XX в. мировую сенсацию произвела игрушка, получившая в СССР название «вечно пьющая птичка» или «птичка Хоттабыча». Тонкая стеклянная колба с горизонтальной осью посередине впаяна в небольшую емкость. Свободным концом колбочка почти касается ее дна. В колбе находится определенное количество эфира (в нижней части), верхняя пустая часть колбы обклеена снаружи тонким слоем ваты. Перед игрушкой ставят сосуд с водой и наклоняют ее, заставляя «попить» (Рис.№12). Затем механизм работает самостоятельно: несколько раз в минуту наклоняется к сосуду с водой, пока вода не кончится.

Механизм такого явления понятен: жидкость в нижней полости испаряется под влиянием комнатного тепла, давление растет и вытесняет жидкость в трубочку. Верхняя часть конструкции перевешивает, наклоняется, пар перемещается в верхний шарик. Давление выравнивается, жидкость возвращается в нижний объем, который перевешивает и возвращает «птичку» в первоначальное положение.

На первый взгляд здесь нарушается второе начало термодинамики: перепад температур отсутствует, машина только забирает тепло из воздуха. Но когда колба достигает сосуда с водой, вода из мокрой ваты интенсивно испаряется, охлаждая верхний шарик. Возникает разность температур верхнего и нижнего сосудов, за счёт которой и происходит движение. Если испарение прекратится (высохнет вата или влажность воздуха достигнет точки росы, то есть температуры, до которой должен охладиться воздух, чтобы содержащийся в нем водяной пар достиг состояния насыщения и начал конденсироваться в росу), машина в полном согласии со вторым началом термодинамики перестанет двигаться. Мощность такого двигателя очень низка из-за незначительной разности температур и давлений, при котором «птичка» работает.

Вечные двигатели как коммерческие проекты

Вечные двигатели, с древнейших времен окутанные тайной изобретения и действия, несомненно, создавались не только для использования в практическом плане. Во все времена были мошенники и фантазеры, намеревавшиеся извлечь не только энергию большую, чем 100%.

Одна из самых известных «афер века» - вечный двигатель Иоганна Бесслера (1680-1745).

Рисунок 13

Рисунок 14

Под псевдонимом Орфиреус этот саксонский инженер 17 ноября 1717 года в присутствии известных физиков продемонстрировал машину с диаметром вала больше 3,5 м. Двигатель пустили в ход и заперли в комнате, а проверив через полтора месяца, убедились, что колесо двигателя вращается с прежней скоростью.

Когда то же самое произошло еще через два месяца, слава Бесслера прогремела по всей Европе. Изобретатель соглашался продать машину Петру I , но этого не произошло. Однако это не помешало жить Бесслеру безбедно на средства, полученные путем демонстрации двигателя. Двигатель представляет собой большое колесо, вращающееся и поднимающее при этом тяжелый груз на значительную высоту (Рис. №13).

Изобретение вызвало множество споров и нерешенных вопросов. Самый главный из них - принцип действия - не был известен широкой публике. Поэтому недоверчивые скептики заключили, что секрет заключается в том, что искусно спрятанный человек тянет за веревку, намотанную, незаметно для наблюдателя, на скрытой части оси колеса. И их ожидания оправдались: вскоре служанка Бесслера раскрыла тайну:

двигатель действительно работал только с помощью третьих лиц (Рис. №14).

Еще один известный случай использования вечного двигателя «не по назначению»: в одном из городов с целью привлечения клиентов у одного кафе было установлено «вечно» вращающееся колесо, которое, конечно, запускалось с помощью механизма.

Некоторые разработчики идей вечных двигателей в хронологическом порядке:

  1. Бхаскара Ачарья (1114-1185), поэт, астроном, математик.
  2. Виллар де Оннекур (XIII век), архитектор.
  3. Николай Кузанский (1401-1464), философ, теолог, церковно-политический деятель.
  4. Франческо ди Джорджо (1439-1501), художник, скульптор, архитектор, изобретатель, военный инженер.
  5. Леонардо да Винчи (1452-1519), художник, скульптор, архитектор, математик, физик, анатом, естествоиспытатель.
  6. Джамбаттиста Порта (1538 - 1615), философ, оптик, астролог, математик, метеоролог.
  7. Корнелиус Дреббель (1572 - 1633), физик, изобретатель.
  8. Атанасиус Кирхер (1602-1680), физик, лингвист, теолог, математик.
  9. Джон Уилкинс (1614-1672), философ, лингвист.
  10. Денни Папен (1647-1712), математик, физик, изобретатель.
  11. Иоганн Бесслер (1680-1745), инженер-механик, врач, мошенник.
  12. Дэвид Брюстер (1781-1868), физик.
  13. Вильгельм Фридрих Оствальд (1853-1932), физик, химик, философ-идеалист.
  14. Виктор Шаубергер (1885-1958), изобретатель.

Заключение

В 1775 году Французская Академия приняла решение не рассматривать предложения вечных двигателей, выдвинув окончательный вердикт: построение вечного двигателя абсолютно невозможно. За всю историю вечного двигателя было изобретено более 600 проектов, причем большинство из них пришлось на время, когда стали известны законы термодинамики и сохранения энергии.

Конечно, усилия многочисленных создателей вечных двигателей не пропали даром. Пытаясь сконструировать невозможное, они нашли немало любопытных технических решений, придумали механизмы и устройства, которые до сих пор применяются в машиностроении. В бесплодных поисках вечного движения родились основы инженерной науки и подтвердились законы, отрицающие его существование.

| Механические вечные двигатели. | Мнимые перпетуум мобиле. | Мошенничество с изобретением Орфиреуса | Наиболее ранние сведения о вечных двигателях. | На пути к определению понятий работы и энергии. | Научная фантастика и перпетуум мобиле. | Опыты с магнетизмом. | Первые попытки создания вечных двигателей. | Период наивысшего расцвета идеи perpetuum mobile. | Перпетуум мобиле в эпоху Возрождения. | Разгар дискуссии о вечном двигателе. | Споры вокруг перпетуум мобиле.

Вечный двигатель второго рода.

Как известно, закон сохранения энергии можно сформулировать в следующей несколько видоизмененной форме: при всех процессах преобразования энергии сумма всех видов энергии, участвующих в данном процессе, должна оставаться неизменной . Такая формулировка, хотя и не допускает возможности создания энергии из ничего, однако оставляет открытым другой путь реализации вечного двигателя, принцип работы которого основывался бы на идеальном преобразовании одной формы энергии в другую. Поэтому можно предложить, например, такой рабочий цикл: пусть в паровой машине (турбине, двигателе внутреннего сгорания или каком-либо ином тепловом двигателе) мы затрачиваем некоторое количество теплоты на совершение определенной механической работы; далее, полученную механическую энергию вновь преобразуем в тепло, нагревая с ее помощью пар и приводя им в действие паровую машину (турбину), и т.д. Понятно, что подобный цикл превращения энергии можно повторять бесконечно: ведь энергия данной системы с течением времени не увеличивается и не уменьшается.

Исследованием вопроса о перпетуум мобиле такого типа в начале XX в. подробно занимался известный немецкий физико-химик Вильгельм Оствальд . Описанную выше идеальную машину, способную циклично и без потерь преобразовывать энергию из одной формы в другую, он назвал перпетуум мобиле второго рода. Правда, как явствует из самого названия, даже после отказа от возможности создания перпетуум мобиле первого рода проблема вечного движения все же продолжает оставаться открытой. При этом, однако, оба указанных вида вечных двигателей резко различаются между собой. В то время как функция объявленного учеными неосуществимым перпетуум мобиле первого рода состояла в непрерывном совершении полезной работы без пополнения запасов энергии от внешних источников, назначение вечного двигателя второго рода представлялось совершенно иным - от этой машины требовалась лишь способность идеально трансформировать энергию.

В связи с обсуждением вопроса о вечном двигателе второго рода в центре дискуссии снова оказалось действие закона сохранения энергии. Из курса физики известно, что этот закон в применении к тепловым процессам составляет содержание первого начала термодинамики. Действительно, первое начало утверждает эквивалентность тепловой и механической энергии, однако в нем ничего не говорится о том, в каком направлении должны протекать процессы преобразования энергии. Бросаем ли мы камень со скалы в пропасть, превращаем ли при взрыве накопленный во взрывчатке запас химической энергии в механическую энергию, свет и тепло, сжигаем ли топливо для обогрева наших домов - все это суть закономерные изменения форм энергии. Но в то же самое время закон сохранения энергии не запрещает протекание любого из этих процессов в обратном направлении, что явно противоречит нашему практическому опыту. Таким образом, некритическое применение этого закона приводит нас к абсурдным заключениям.

Приведем еще один пример. Согласно первому началу термодинамики, теплота эквивалентна механической энергии, поэтому, не входя в противоречие с первым началом, вполне можно построить машину, отбирающую тепло от тела, которое имеет температуру окружающего воздуха, или, к примеру, забирающую тепло воды из больших водоемов и совершающую благодаря этому механическую работу. При этом даже небольшое охлаждение воды в водоеме освобождало бы огромное количество тепловой энергии, которую можно было бы преобразовывать в электрическую или, далее, опять в механическую энергию. Так, например, охлаждая на 1°С воду, содержащуюся в пруду площадью 120 м 2 и глубиной 1,9 м, мы получили бы энергию, равную 954 кДж . Если преобразовать теперь полученную механическую энергию обратно в тепло, то тем самым возникает замкнутый цикл преобразования энергии, основанный на принципе перпетуум мобиле второго рода. Вопрос заключается только в том, осуществимы ли на практике машины, реализующие этот идеальный цикл трансформации, поскольку в обыденной жизни мы никогда не встречаемся с подобными явлениями.

Из собственного опыта мы знаем, что в теплом помещении вынутая из холодильника бутылка с молоком нагревается, а стакан горячего чая остывает. К тому же холодная жидкость при своем нагревании незаметно понижает температуру воздуха в комнате, а горячая - повышает. Понятно, что в этих процессах мы не находим ничего удивительного. Вместе с тем никогда не случается, чтобы холодное тело само собой охладилось или горячее - нагрелось. Для такого охлаждения служат специальные холодильные установки, нуждающиеся, однако, в постоянном подводе энергии от внешних источников. В то же время самопроизвольное охлаждение холодного или нагревание горячего тела вовсе не противоречит первому началу термодинамики. Поэтому очевидно, что формулировку этого закона следует как-то уточнить и дополнить.

Задачу об использовании тепла путем охлаждения водных бассейнов нашей планеты приводил еще В. Оствальд в качестве типичного примера, демонстрирующего нереальность идеи вечного двигателя второго рода. В своей книге «Всеобщая химия », изданной в 1893 г., он писал:

«Обычно мы не отдаем себе отчета в том, что теорему о перпетуум мобиле можно истолковывать двояким образом. С одной стороны, - о ней речь заходит чаще - можно было бы построить перпетуум мобиле (имеется в виду вечный двигатель первого рода), с его помощью вырабатывать определенную энергию и использовать ее, например, для привода какой-либо машины. Доказательство невозможности подобного процесса приводит нас к первому основному закону энергетики, который говорит о том, что энергию нельзя создать или уничтожить. Перпетуум мобиле, однако, можно было бы приводить в действие иначе, не вырабатывая энергии, если бы удалось включить в процесс трансформации огромное количество неиспользованной энергии, таящейся в природе. Например, если бы можно было преобразовать большие запасы тепловой энергии, содержащиеся в водах Мирового океана, в механическую энергию, которая со временем опять перешла бы в тепловую энергию, то тем самым мы осуществили бы вечный двигатель второго рода. Такое, конечно, невозможно, потому что эти запасы тепла, внешне проявляющиеся в форме установившейся температуры Земли, неизменны».

Другой немецкий физик Рудольф Клаузиус также много времени посвятил исследованию проблем термодинамики. В частности, он пришел к выводу, что энергия нашего мира остается неизменной. Одновременно с этим он высказал важную теорему о стремлении энтропии замкнутой системы к максимуму. Чтобы лучше понять значение этой теоремы, попытаемся подробнее пояснить смысл понятия энтропии, оставляя в стороне его строгую математическую формулировку. Важнейшим свойством энтропии является то, что она не изменяется в обратимых физических процессах, т.е. в идеальных процессах, которые могут протекать в обоих направлениях без какой бы то ни было потери энергии. Практический опыт показывает, что в реальных физических явлениях всегда присутствуют те или иные факторы, например, пассивные силы (трение), из-за воздействия которых часть преобразуемой энергии, переходя в тепло, для следующей фазы данного цикла трансформации оказывается безвозвратно потерянной. О таких потерях говорят как о «мертвой» энергии, об «обесценивании » энергии или о снижении ее «качества ». В связи с этим тепловой энергии отводят последнее место в ряду различных видов энергии, поскольку при всяком процессе ее преобразования обязательно возникает тепло, которое уже нельзя трансформировать ни в какую более высокую форму энергии.

Рассуждения такого рода, применявшиеся к нашему миру в целом, приводили к созданию представлений о так называемой тепловой смерти Вселенной , к которой будто бы закономерно стремится весь окружающий мир. В частности, это должно было проявляться в повышении температуры земной атмосферы и самой планеты в результате выделения тепла при всяком природном процессе преобразования энергии.

В другой интерпретации энтропия рассматривается как мера «рассеяния» энергии в системе. Это толкование энтропии основывается на том факте, что при любом процессе, происходящем в какой-либо замкнутой системе, преобразуется только часть энергии системы, в то время как остаток рассеивается в тепло, причем так, что его нельзя извлечь обратно. Мерой таких потерь или «рассеяния » энергии и является приращение энтропии. При этом численное значение энтропии оказывается пропорциональным величине энергии, перешедшей во внутреннюю энергию участвующих в процессе тел, т.е. в теплоту.

Именно подобное рассеяние энергии является препятствием для реализации вечных двигателей, работающих без пополнения энергетических запасов извне. Например, рассеяние энергии в приводном механизме паровой машины и в самом котле, где нагревается пар для приведения ее в движение, делает невозможным описанный выше вечный двигатель второго рода. Действительно, пусть нагретый пар из котла приводит в движение паровую машину. Представим себе, что приводной механизм этой машины сделан так, что энергия его движения полностью преобразуется в тепло, подводимое обратно к котлу паровой машины. Так вот, в этой, казалось бы, идеальной системе именно из-за наличия потерь будет происходить постоянное убывание рабочей энергии, причем в результате температура и давление пара в котле будут падать, а вместе с ними будет убывать и мощность самой паровой машины.

Другие изобретатели перпетуум мобиле предлагали, например, соединить два часовых механизма так, чтобы ходом одного из них заводилась пружина другого - это давало бы возможность получить «вечную» хронометрическую систему, которая принципиально не противоречила бы закону сохранения энергии. Практические опыты, однако, опровергли эту возможность, потому что такой вечный двигатель останавливался, как только сравнивались приводные усилия обеих пружин. Более того, если даже допустить, что с помощью соответствующих изменений конструкции можно достигнуть переноса существенной части энергии от одной пружины к другой, то и тут мы не сумели бы ничего добиться - именно из-за влияния уже упомянутого рассеяния энергии, сопровождающего каждый рабочий цикл.

Таким образом, с помощью понятия энтропии был сформулирован еще один важный закон, вместе с законом сохранения энергии проливший свет на проблему вечного двигателя второго рода. Одна из его формулировок - это теорема Клаузиуса о стремлении к максимуму энтропии замкнутой системы.

Другая эквивалентная формулировка утверждает, что невозможно создать устройство, постоянно совершающее механическую работу за счет теплоты и преобразующее полученную механическую энергию обратно в тепло . Этот закон называется вторым началом термодинамики. Второе начало термодинамики отвергает также возможность получения энергии путем охлаждения тел ниже температуры окружающей среды. Таким образом, для того чтобы преобразовать теплоту в другой вид энергии (например, в механическую), нам нужно иметь нагреватель (котел) и конденсатор (холодильник). Чем больше разность температур в нагревателе и конденсаторе, тем большую долю тепла можно преобразовать в полезную работу. Если же эта разность будет равна нулю, то и количество произведенной работы окажется нулевым.

Второе начало термодинамики устраняет неполноту закона сохранения энергии, который не делал различия между обратимыми и необратимыми процессами и тем самым оставлял призрачную надежду тем, кто не хотел мириться с невозможностью создания перпетуум мобиле.

Кроме того, второе начало термодинамики налагает запрет и на вечные двигатели, аналогичные перпетуум мобиле второго рода, но основанные на преобразовании других видов энергии. Так, например, невозможна вечная работа пары электромотор - генератор, сидящей на одном валу, которая действовала бы по следующей схеме: электрический ток, вырабатываемый генератором, приводит во вращение электромотор, а механическая энергия электромотора в свою очередь трансформируется в генераторе в электрическую. Если бы оба элемента этой пары работали с 100%-ным к.п.д. (что, естественно, невозможно из-за наличия в них электрических и механических потерь), то подобная система должна была бы поддерживать себя в постоянном движении. Однако она никоим образом не могла бы быть использована для практических целей, потому что, начав отбирать от этого агрегата полезную работу, мы тем самым нарушили бы его энергетическое равновесие, и система бы остановилась.

Этот часто приводимый в литературе пример системы мотор-генератор много раз служил прообразом ряда других, более простых проектов. Правда, при подобных упрощениях невозможность перпетуум мобиле «мотор-генераторного» типа выявляется еще яснее. Ведь, например, можно заменить мотор и генератор системой двух взаимосвязанных ременных шкивов. Наконец, можно ограничиться даже одним шкивом, считая одну его половину ведущим, а другую - ведомым элементом. Можно придумать еще десятки подобных конструкций, но результат всегда будет только один, поскольку всем этим вечным двигателям, как простым, так и сложным, второе начало термодинамики уже огласило свой приговор.

Строгости ради стоит заметить, что этот закон имеет статистический характер и применим только к макроскопическим объектам. В частности, его нельзя использовать при описании движения молекул или малых частиц вещества (броуновское движение ). Кроме того, постоянное тепловое движение, обусловливающее внутреннюю энергию макроскопических тел, не может служить источником энергии для совершения полезной работы.

  • Вечный двигатель первого рода - двигатель (воображаемая машина), способный бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Их существование противоречит первому закону термодинамики. Согласно закону сохранения энергии
  • Вечный двигатель второго рода - воображаемая машина, которая будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел (см. Демон Максвелла). Они противоречат второму закону термодинамики. Согласно Второму началу термодинамики , все попытки создать такой двигатель обречены на провал.

История

Индийский или арабский перпетуум мобиле с небольшими косо закрепленными сосудами, частично наполненными ртутью.

Попытки исследования места, времени и причины возникновения идеи вечного двигателя - задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде . В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своем стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикрепленными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещенных на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе» . Первые проекты вечного двигателя в Европе относятся к эпохе развития механики , приблизительно к XIII веку. К XVI - XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран. Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя.

Неудачные конструкции вечных двигателей из истории

Рис. 1. Одна из древнейших конструкций вечного двигателя

На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо , в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага , должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.

Однако, если такое колесо изготовить, оно останется неподвижным. Дифференциальная причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.

Рис. 2. Конструкция вечного двигателя, основанного на законе Архимеда

На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда . Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.

Здесь не учтено следующее: выталкивающая сила - это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет превышать суммарную силу, действующую на остальные баки. Поэтому вся система просто прокрутится по часовой стрелке, пока не выльется вода.

Патенты и авторские свидетельства на вечный двигатель

Литература

  • Вознесенский Н. Н. О машинах вечного движения . М., 1926.
  • Ихак-Рубинер Ф. Вечный двигатель . М., 1922.
  • Кирпичёв В. Л. Беседы по механике . М.: ГИТЛ, 1951.
  • Мах Э. Принцип сохранения работы: История и корень его . СПб., 1909.
  • Михал С. Вечный двигатель вчера и сегодня . М.: Мир, 1984.
  • Орд-Хьюм А. Вечное движение. История одной навязчивой идеи . М.: Знание, 1980.
  • Перельман Я. И. Занимательная физика . Кн. 1 и 2. М.: Наука, 1979.
  • Петрунин Ю. Почему идея вечного двигателя не существовала в античности? // Петрунин Ю.Ю. Призрак Царьграда: неразрешимые задачи в русской и европейской культуре. - М.: КДУ, 2006, с. 75-82

Примечания


Wikimedia Foundation . 2010 .

Вечный двигатель уже многие века не дает покоя ученым и инженерам. Еще бы, идея создать устройство, которое будет постоянно работать, не тратя при этом энергии, кажется очень заманчивой. Реально ли его создать, рассказывают ученые.

Что такое вечный двигатель?


Вечный двигатель или Perpetuum Mobile - это устройство воображаемое. Некоторые считают, что теоретически можно создать машину, которая будет бесконечно совершать работу без затрат каких-либо энергетических ресурсов. В то же время, постепенно ученые разочаровывались в этой идее и признавали, что от попыток создать такое устройство лучше отказаться, потому что они бессмысленны. Невозможность создать вечный двигатель постулируется как первое начало термодинамики. Но до сих пор идея вечного двигателя вызывает повышенный интерес.

Идеальный вечный двигатель должен проработать до окончания Большой заморозки (Big Freeze). Сторонники этой теории считают, что до скончания времени Вселенная будет расширяться с очень плавным ускорением. Этот процесс и называется Большой заморозкой, и когда он завершится, наступит конец всего. Когда это произойдет, точно не установлено, но у нас есть еще приблизительно 100 триллионов лет. Так вот, вечный двигатель должен работать как минимум столько же, чтобы считаться настоящим вечным двигателем.

Какими бывают вечные двигатели?

Perpetuum Mobile делятся на двигатели первого рода и второго рода. Двигатели первого рода могли бы функционировать без топлива — и вообще без энергетических затрат, которые возникают, например, при трении деталей механизма друг о друга. Двигатели второго рода могли бы извлекать тепло из более холодных окружающих тел и использовать эту энергию в работе.

Есть много проектов в Интернете, которые утверждают, что работают над конструкцией вечного двигателя. Однако если изучить эти проекты внимательно, становится понятно, что они все очень далеки от идеи вечного двигателя. Но если кому-то удастся сделать такое устройство, последствия будут ошеломляющими. Считается, что мы получим вечный источник энергии - бесплатной энергии.

К сожалению, согласно фундаментальным законам физики нашей Вселенной, создание вечного двигателя невозможно.

Почему создание вечного двигателя невозможно?

Вероятно, есть много людей, которые скажут «никогда не говори «никогда», особенно, если речь идет о науке». В какой-то степени это справедливо. Но если окажется, что вечный двигатель создать возможно, это перевернет физику, которую мы знаем. Окажется, что мы во всем были неправы и ни одно из наших предыдущих наблюдений не имеет никакого смысла.

Первый закон термодинамики -- закон сохранения энергии. Согласно этому закону, энергия не может быть ни создана, ни уничтожена - она просто переходит из одной формы в другую. Для того, чтобы держать механизм в постоянном движении, приложенная энергия должна остаться в этом механизме без каких-либо потерь. Ровно поэтому создание вечного двигателя невозможно.

Для того, чтобы построить вечный двигатель первого рода, мы должны выполнить несколько условий:

  1. У машины не должно быть никаких «трущихся» частей, любые движущиеся части не должны касаться других частей, так как иначе между ними возникнет трение. Это трение в конечном счете приведет к тому, что машина начнет терять энергию. При соприкосновении частей возникает тепло, и именно это тепло и есть энергия, потерянная машиной. Вы скажете, что тогда нужно сделать устройство с гладкой поверхностью, чтобы не возникало трение. Но это невозможно, так как не бывает совершенно гладких объектов.
  2. Машина должна работать в вакууме, без воздуха. Это исходит из первого условия. Эксплуатация машины в любом месте заставит ее терять энергию из-за трения между движущимися частями и воздуха. Хотя потери энергии из-за трения воздуха очень малы, для вечного двигателя это серьезная проблема. Если есть хотя бы минимальные потери энергии, машина начнет останавливается и в конце концов остановится совсем из-за этих потерь, даже если это займет очень много времени.
  3. Машина не должна издавать никаких звуков. Звук также форма энергии, и если машина издает любой звук, это означает, что она также теряет энергию.

Двигатели второго рода, которые используют теплоту окружающих тел, не противоречат закону сохранения энергии. Однако эти хитрые конструкции бессильны против второго начала термодинамики: в замкнутой системе самопроизвольный переход теплоты от более холодных тел к горячим невозможен. Для этого необходим некий посредник. А для работы посредника необходима энергия из внешнего источника. Кроме того, в природе не существует по-настоящему обратимы

Но самое главное, создание вечного двигателя может оказаться бессмысленным. Люди рассчитывают, что если такое устройство будет сделано, мы получим бесплатный источник энергии. Но так ли это? На самом деле, мы получим ровно столько энергии, сколько направим в этот двигатель. Мы ведь помним, что согласно законам физики, которые пока не опровергнуты, энергия не может быть создана из ничего, она может быть только преобразована. Так что, выходит, вечный двигатель - это бесполезное устройство.

Скорость, с которой человечество превращает в тепловую все остальные формы энергии, начинает уже угрожать самому факту существования цивилизации. «Тепловая смерть» в обозримом будущем из-за всё нарастающего потребления энергии с последующим ее рассеянием в виде тепла уже кажется неизбежной при сохранении нынешних темпов экономического развития. Но если человечество попытается затормозить их, то пойдет поперек законов эволюции и все равно погибнет.

Есть ли выход? Вполне возможно, что он пока не просматривается просто из-за неправильного понимания одного физического принципа. Преобразование энергопотребления в круговорот энергии в принципе позволило бы наращивать его интенсивность, не нарушая равновесия со средой. Это доказывает опыт органического мира, который, на протяжении тысячелетий сохраняя массу биосферы более или менее постоянной, многократно увеличил за время своей эволюции ежегодное потребление вещества и энергии.

Ныне пропускаемые им ежегодно через себя массы вещества сравнимы с массой земной коры, а по некоторым оценкам - превышают ее.

Вечный двигатель второго рода невозможен?

Поскольку почти вся потребленная нами энергия рано или поздно рассеивается в виде тепла, из-за чего нам угрожает «тепловая смерть», постольку круговорот энергии должен будет принять форму круговорота тепла. Другими словами, нам предстоит научиться собирать рассеянное тепло, чтобы вновь и вновь использовать его энергию.

Идеальной тепловой машиной принято считать ту, которую теоретически разработал в 1824 году французский физик Сади Карно (Nicolas Léonard Sadi Carnot, 1796–1832). Ее идеальность заключается в том, что коэффициент полезного действия (КПД) любой другой машины, использующей те же холодильник и нагреватель, будет меньше, чем у машины, придуманной им. А то, что КПД его машины отличен от единицы, следует из самого факта наличия у нее холодильника: получив определенную энергию от нагревателя (например, в виде тепла от сжигания топлива), рабочее тело (в идеальной машине это, разумеется, идеальный газ), выполняя полезную работу, совершенно бесполезно отдает часть своей энергии в виде тепла холодильнику.

Сегодня для собирания рассеянного тепла используются энергетические установки классического типа (с холодильником) - гео- и гидротермальные энергоустановки и тепловые насосы с КПД меньшими, чем КПД Карно.

Французский физик Сади Карно создавал свою теорию тепловых машин, когда был еще совсем молодым. Хотя в основе его рассуждений лежала отвергнутая впоследствии теория о неуничтожимом тепловом флюиде, многие его выводы оказались точными и обладали большой практической пользой

Разумеется, использование рассеянного тепла возможно только потому, что среда нагрета неравномерно, то есть с перепадами температуры, которые и используются собирающими тепло тепловыми машинами. Коль скоро величина этих перепадов невелика, КПД классических тепловых машин зарезается до чрезмерно малых значений. Поэтому круговорот тепла в энергетике может стать реальным лишь при ее базировании на энергетических установках без холодильника, КПД которых не был бы ограничен КПД Карно.

Такие энергетические установки называют вечными двигателями второго рода. Принято считать, что они запрещены

Вторым началом термодинамики. Однако угроза «тепловой смерти» заставляет нас максимально благожелательно рассмотреть аргументы в их защиту.

Положение не безнадежно. Не может быть так, чтобы на протяжении миллионов и миллиардов лет законы эволюции подстегивали органический мир, а затем и человечество к развитию в определенном направлении (в сторону интенсификации потребления вещества и энергии), а потом это развитие вдруг наткнулось бы на закон физики, который, делая невозможным круговорот тепла, обрекал бы человечество на гибель. Законы эволюции и физики, думается, входят в единый и непротиворечивый свод законов природы. Если это и на самом деле так, то запрет на вечные двигатели второго рода должен оказаться несостоятельным.

Ошибки классиков

Конечно, науки без ошибок не бывает, однако в истории запрета на вечные двигатели второго рода ошибок особенно много. Начать с того, что вывод Сади Карно об обязательности холодильника был сделан на основании принципа неуничтожаемости теплорода, согласно которому потребление тепла подобно потреблению энергии. Потребляя энергию, мы ведь не уничтожаем ее (поскольку действует закон сохранения энергии), но только превращаем одну ее форму в другую. Потребление теплорода, говорит Карно, означает не его уничтожение, но лишь его переход от более теплого тела к менее теплому. Вот это менее теплое тело и является, полагает Карно, холодильником, обязательным для всякой тепловой машины:

Возникновение движущей силы обязано в паровых машинах не действительной трате теплорода, а его переходу от горячего тела к холодному […] этот принцип приложим ко всем машинам, приводимым в движение теплотой […] Согласно этому принципу, недостаточно создать теплоту, чтобы вызвать появление движущей силы: нужно еще добыть холод.

Отбросив теорию теплорода, шедшие за Карно классики термодинамики оставили в силе его вывод о наличии у всякой тепловой машины холодильника. Мягко говоря, это удивляет, поскольку сегодня хорошо известно, что, превращаясь в другие формы энергии, тепло перестает существовать как тепло. Иначе говоря, потребляя теплород (тепло), мы его уничтожаем, что подрывает аргументацию Карно.

Еще более удивительна история возникновения понятия вечных двигателей второго рода. Его ввел Вильгельм Оствальд (

Wilhelm Friedrich Ostwald, 1853–1932) в 1888 году, и сделал он это абсолютно некорректно:

Работа, доставляемая гигантской машиной океанского парохода, целиком переходит в теплоту, так как энергия движения движущегося судна по прибытии становится равной нулю и превращается в теплоту. Если бы можно было сообщенную морской воде теплоту обратно превратить в энергию движения, то пароход мог бы совершить свой обратный путь без затраты угля, что, конечно, невозможно […] Исполнение этого было бы равносильно perpetuum mobile […] так как одно и то же количество энергии постоянно можно было бы употреблять для одинаковых превращений, то техническую задачу дарового получения работы можно было бы считать разрешенной. Что этого на самом деле нет, выражают в следующей форме: perpetuum mobile второго рода невозможен. При этом под perpetuum mobile второго рода подразумевают машину, которая может приводить покоящуюся энергию в движение или превращать ее в другие формы.

Покоящейся энергией Оствальд, как это было тогда принято, называет рассеянное в среде тепло:

Даровая теплота находится повсюду в безграничном количестве […] она представляет [собой] покоящуюся энергию.

Обратим внимание: Оствальд запрещает не тепловую машину без холодильника, но любую тепловую машину, потребляющую рассеянное тепло. Однако мы-то с вами сегодня точно знаем, что такие тепловые машины существуют! Оствальд, положим, мог о них и не знать (первая вырабатывающая электроэнергию геотермальная установка появилась в 1904 году, аналогичная гидротермальная - в 1929 году, первый патент на технологию тепловых насосов был выдан в 1912 году), однако не может не удивлять, что его формулировки воспроизводятся на протяжении XX века и другими авторами. Действующую на Земле тенденцию к рассеянию нетепловых форм энергии в виде тепла все они, начиная с Оствальда, некорректно трансформируют в не знающий исключений закон.

Холодильник обязателен?

Но вернемся к запрету на тепловые машины без холодильника. Последователи Карно, отказавшись от теплорода, не исправили его ошибку, на мой взгляд, потому, что работали исключительно с классическими тепловыми машинами, имеющими две особенности, которые делают холодильник для них и на самом деле необходимым:

1) цикличность;

2) однофазное рабочее тело (газ или жидкость).

Возвращая такое рабочее тело в начальное состояние, мы вынуждены отдавать часть полученного от нагревателя тепла холодильнику. Между тем, для нециклических тепловых машин он не обязателен, как не обязателен он, по-видимому, и для циклических тепловых машин с двухфазным рабочим телом газ-жидкость.

Примером нециклической тепловой машины без холодильника может служить работающий в вакууме ракетный двигатель, для которого говорить об охлаждении продуктов сгорания за бортом не приходится - расширение газа в пустоту, как известно, происходит изотермически. Еще один пример нециклической тепловой машины без холодильника будет приведен далее.

Что же касается циклических тепловых машин с двухфазным рабочим телом, то, как это доказывают в последние десятилетия независимо друг от друга несколько отечественных исследователей, возвращение рабочего тела в начальное состояние может в них осуществляться не с передачей части тепла холодильнику, но с ее возвращением нагревателю. Точнее, часть полезной работы одной фазы рабочего тела используется для адиабатического расширения и, следовательно, охлаждения другой. Внешний холодильник становится ненужным, а КПД - не ограниченным КПД машины Карно.

Второе начало термодинамики

Излюбленный аргумент защитников вечных двигателей второго рода - ограниченность второго начала термодинамики. Моя позиция иная. Я считаю, что второе начало - это закон природы, действующий, если исключить микроскопические флуктуации, без ограничений. Другое дело, что надо правильно его прочитать.

В современных учебниках и научных монографиях содержание второго начала чрезмерно размыто, о чем свидетельствует разнообразие его формулировок. Я собираю их уже много лет, и к настоящему моменту в моей коллекции 48 формулировок, но в реальности их еще больше. Это разнообразие контрастирует, например, с формулировками закона сохранения энергии, которые в разных источниках практически слово в слово повторяют друг друга.

Часто приходится читать о тождественности разных формулировок второго начала. Это и так, и не так. Конечно же, все многочисленные формулировки второго начала не могут быть тождественными, как не могут они все быть и разными. Я попытался вышелушить ядро закона природы, который за всем этим стоит, и у меня получились две такие его компоненты: 1) действует закон возрастания полной энтропии; 2) существует асимметрия между превращениями нетепловых форм энергии в теплоту, с одной стороны, и превращениями теплоты в другие формы энергии - с другой: первые, в отличие от вторых, не требуют компенсации.

Самый распространенный источник путаницы я вижу в неумении провести различие между тепловой и нетепловой энтропией. Между тем, различие между ними легко продемонстрировать. Если смешать горячий воздух с холодным, мы получим теплый воздух - то же самое, что при передаче определенного количества тепла от горячего воздуха холодному. Энтропия выросла при участии теплового процесса.