Двигатель работающий от тепла. Что такое двигатель стирлинга и какое отношение он имеет к автономной энергетике

Долгое время такие недостатки двигателей внутреннего сгорания (ДВС), как жесткие требования к топливу и маслам, загрязнение атмосферы, шум на выхлопе, резкое ухудшение экономичности и других характеристик при отклонении от оптимального режима работы и, наконец, не возможность использования источников тепла, не связанных с горением, не имели существенного значения. Однако с ростом числа и мощности эксплуатируемых ДВС проблемы токсического и шумового загрязнения окружающей среды приобрели жизненно важное значение.


Быстрое исчерпание разведанных запасов нефти в мире привело к тому, что в последние десять лет происходит переход из эры дешевой нефти в эру высоких цен на энергию в целом. С другой стороны, в новых отраслях техники возникла острая необходимость в специальных тепловых двигателях (например, для работы в космосе, в подводных условиях), не нуждающихся в атмосферном кислороде, но способных работать от любого высокотемпературного источника тепла.

Эти проблемы повысили интерес специалистов к альтернативному двигателю с внешним подводом тепла предложенному еще в 1816 г. шотландским изобретателем Робертом Стирлингом. Принцип работы двигателя Стирлинга (ДС), краткая историческая справка о его развитии и описание некоторых конструкций таких двигателей были опубликованы (см. статью Г. Б. Либефорта «Двигатель внешнего сгорания»).

По прогнозам ведущих специалистов крупных фирм США, Японии, Швеции, Голландии ДС, возможно, станет доминирующим двигателем в следующем столетии.

Почему же ДС прочат такие блистательные перспективы? Чтобы ответить на этот вопрос, необходимо вспомнить историю тепловых двигателей.

К пределу экономичности

В 1824 г. французский инженер С. Карно четко сформулировал условия, необходимые для наиболее эффективного превращения тепла в работу. Он предложил идеальный цикл, состоящий из двух изотерм и двух адиабат . С тех пор данный цикл является термодинамическим эталоном совершенства тепловых двигателей. Но в цикле Карно при большой разности температур нагревателя и холодильника расширение и сжатие рабочего тела необходимо вести в очень большом интервале давлений, в связи с чем его практическая реализация настолько сложна, что оказывается нецелесообразной.

Еще до выхода в свет работы С. Карно Р. Стирлинг удачно обошел эту трудность, введя в цикл тепловой машины регенерацию тепла. Однако низкий уровень технологии в начале XIX в. не позволил создать достаточно совершенные конструкции двигателей этого типа, и они были надолго забыты.

Расчеты, проведенные в 1938 г. специалистами фирмы «Филипс», показали, что оба цикла - и Стирлинга, и Карно - термодинамически равно ценны. Цикл Стирлинга, состоящий из двух изотерм и двух изохор . может служить таким же термодинамическим эталоном, как цикл Карно. Более того, регенерация тепла в этом цикле позволяет работать в большом интервале темпера тур, а следовательно, с высоким КПД при малых соотношениях давления сжатия и расширения рабочего тела. Эта особенность цикла Стирлинга делает реальной его практическую реализацию в двигателях, имеющих КПД, близкий к максимально возможному при данной разности температур нагревателя и холодильника.

Рассмотрим несколько идеализированный рабочий процесс двигателя Стирлинга вытесни тельного типа на наглядной компоновочной схеме с расположением цилиндров под углом 90° и обычным кривошипно-шатунным механизмом (рис. 3).

Термический КПД идеального цикла Стирлинга, как и цикла Карно, определяется формулой


Однако практически термический КПД этих двигателей заметно ниже.

В реальных двигателях Стирлинга энергия расходуется на трение и теплопроводность, а так же отходит с продуктами горения и т. д. Тем не менее, благодаря принципиальным термодинамическим преимуществам цикла Стирлинга в уже созданных ДС достигнуты наибольшие значения эффективного КПД по сравнению с другими тепловыми двигателями одинаковой мощности (рис. 2).

В двигателе Стирлинга можно использовать любое дешевое топливо: газ, уголь, дрова и даже торф. При этом, в отличие от ДВС, топливо сжигается непрерывно при низком давлении и оптимальном избытке воздуха в камере сгорания, расположенной вне рабочего объема Содержание ядовитых веществ в продуктах сгорания при таких условиях уменьшается до минимума, а количество выделяемой энергии увеличивается. Кроме традиционных топлив, для ДС пригодны другие источники тепла, расплавы солей, радиоизотопы, а так же ядерная и солнечная энергия, тепло недр Земли и т. п.

Внутренний объем двигателя Стирлинга герметичен, поэтому в него не попадает абразивная пыль, масло не соприкасается с продуктами горения и не окисляется (следовательно, почти не расходуется). Благодаря плавности рабочего процесса снижаются вибрация и нагрузки на все трущиеся элементы двигателя.

Эти особенности делают ДС более надежным и долговечным по сравнению с ДВС, позволяют использовать его длительное время без обслуживания. Принцип внешнего подвода тепла обеспечивает быстрый и безотказный запуск при низких температурах.

В дополнение к этому уникальному набору качеств двигатель Стирлинга практически бесшумен, так как он работает без клапанов и не имеет резкого пульсирующего выхлопа.

Перспективность двигателей Стирлинга давно подтверждена практикой. Например, фирма «Филипс» в свое время продемонстрировала 16 тонный автобус с ДС мощностью 100 л. с., фирма «Юнайтед Стирлинг» 7-тонный грузовой фургон, а американцы - легковой автомобиль "Форд-Торонто".

В настоящее время за рубежом примерно 60 фирм работают над дальнейшим совершенствованием двигателей Стирлинга. Уже разработаны двигатели этого типа большой мощности для тепловозов и электростанций, работающих на каменном угле. ДС используются для привода тепловых насосов, передвижных электрогенераторов. Созданы образцы для работы на спутниках Земли. Большое количество работ посвящено интереснейшей проблеме - применению миниатюрных ДС с радиоизотопным источником тепла для привода искусственного сердца.

Использование в качестве рабочего тела водорода под давлением до 200 кГ/см 2 (вместо воздуха, на котором работали первые ДС) позволило снизить удельную массу последних образцов ДС до 2,6-3,4 кГ/кВт, а отдельных конструкций до 1,2 кГ/кВт.

Эффективный КПД ДС нового поколения фирмы "Механикл-Технолоджи" (США) достигает 43,5% (вместо 32÷35% у лучших образцов автомобильных дизелей). Успехи в области технологии получения жаропрочной керамики позволят в дальнейшем повысить максимальную температуру цикла и создать ДС с КПД до 60%.

В рамках программы экономии энергетических ресурсов в Японии осуществляется шестилетний план разработок ДС. Уже в 1987 г. должны быть разработаны многотопливные двигатели с высокой топливной экономичностью и экологическими характеристиками для различных целей. В некоторых типах разрабатываемых двигателей будет использован природный газ. Недавно в пустыне Мохова в США было успешно испытано гелиооборудование с двигателем Стирлинга, преобразующее солнечную энергию в электрическую. Его общий КПД составил 29 %. Солнечная энергия, концентрируемая при помощи параболического зеркала, приводит в действие установку, работающую по идее Стирлинга.

Основные эксплуатационные показатели - ДВС - КПД, моторесурс и надежность работы - при уменьшении мощности снижаются в значительно большей степени, чем у ДС. Это и неудивительно, так как при малом размере цилиндра ДВС трудно обеспечить полное сгорание рабочей смеси, а вот горелка двигателя Стирлинга и при малой мощности обеспечивает практически полное сгорание топлива.

Как видно из рис. 2. эффективный КПД ДС в широком диапазоне мощностей более чем в два раза превышает КПД бензинового ДВС. В то же время при мощности на валу меньше 1 кВт КПД двигателя Стирлинга превосходит КПД бензинового ДВС в 3-4 раза.

Как показали результаты сравнительных испытаний, проводившихся в США, область экономичных скоростных и нагрузочных характеристик ДС примерно в семь раз шире, чем у современных ДВС. Благодаря этому при работе на частичных нагрузках и неустановившихся режимах (например, при движении автомобиля в городских условиях) ДС обеспечивает экономию до 50 % топлива по сравнению с ДВС, имеющим тот же эффективный КПД в режиме максимальной экономичности Подобный эффект, несомненно, будет наблюдаться для лодочных и судовых двигателей.

Велики потенциальные возможности экономии топлива и смазочных материалов при эксплуатации ДС а будущем. Действительно, если учесть более высокий КПД ДС, в два раза более низкую стоимость топлива (газ) и экономичность при работе на частичных нагрузках, то получается, что для этого типа двигателя расходы на топливо в широком диапазоне мощностей сокращаются примерно в 4-5 раз, а при мощности меньше 1 кВт - в 6 8 раз.

Один из разработанных и изготовленных мною двигателей Стирлинга с воздушным охлаждением мощностью 0,1 кВт показан на рис. 1. Он работает почти бесшумно, токсичность выхлопных газов ниже предела чувствительности прибора "Инфпалит-8". топливом служит сжиженный пропан.

ДС мощностью до 1 кВт должны найти широкое применение на миниавтомобилях, картингах, культиваторах, газонокосилках и сенокосилках, мотоблоках, для привода водяных насосов различного назначения и т. п. Небывалая топливная экономичность была практически подтверждена автором при использовании ДС малой мощности на газонокосилке и для других целей. На сегодняшний день ДС - это, по существу, единственный тепловой двигатель, который может без вреда для здоровья людей использоваться в закрытых помещениях складах, теплицах, туннелях и т. п.

Способность ДС в течение длительного времени работать без обслуживания позволяет эффективно использовать его в качестве источника питания на маяках, радиобуях, автоматических метеостанциях и т. п.

Двигатель для судов

В ДС примерно 50% теплоты, участвующей в цикле, отводится через холодильник (у дизеля 20%), причем для достижения высокого термического КПД двигателя тепло должно отводиться при пониженной температуре (как правило, 60 °С). В обычных условиях это требует применения более мощной системы охлаждения с радиатором, имеющим в 2,5-3 раза большую поверхность, чем у дизеля.

Это существенное затруднение полностью отпадает при использовании ДС на водном транспорте, где охлаждающая среда - забортная вода - в неограниченном количестве. Сравнительно низкая ее температура (4-15° для средних широт) увеличивает разницу температур нагревателя и холодильника, следовательно, при этом КПД двигателя выше. Например, низкооборотные судовые дизели нового поколения мощностью порядка 1000-9000 кВт имеют эффективный КПД до 50%.

Значительно повысить экономичность эксплуатации судов позволит использование ДС, в котором будет сжигаться каменный уголь. Решающим доводом за такое решение является то, что стоимость угля в 6-10 раз ниже стоимости дизельного топлива. Одновременно, благодаря особенностям нового двигателя, повысится надежность силовой установки и готовность судна к эксплуатации, уменьшится объем работ по его техническому обслуживанию. Канадские ученые должным образом оценили эти преимущества и ведут исследования по переделке обычных судовых дизелей мощностью до 1700 кВт в двигатели Стирлинга, работающие на угле. Порошкообразный уголь предполагается подавать в камеру сгорания ДС при помощи форсунок и сжигать в распыленном состоянии

В последнее время к двигателю Стирлинга проявляют интерес даже некоторые фирмы, специализирующиеся на производстве судовых дизелей. Например, японская фирма «Мицубиси» недавно провела успешное испытание судового ДС мощностью 66 кВт. В период с 1980 по 1983 гг. в Шанхайском НИИ судовых дизелей был разработан двухцилиндровый ДС мощностью 7,5 кВт.

Большой интерес представляет возможность использования для судовых ДС тепловых аккумуляторов вместо топлива. Запас тепловой энергии в расплавах некоторых солей, например, фтористого лития, составляет примерно 0,5 кВт ч/л (500 кВт ч/м 3) Таким образом, энергоемкость тепловых аккумуляторов соизмерима с калорийностью обычных топлив и вполне достаточна для многих судов, совершающих не слишком длительные рейсы. В Николаевском кораблестроительном институте разработан проект судовой энергетической установки мощностью 100 кВт с тепловым аккумулятором, материалом для которого служит обыкновенный графит.

Зарядку тепловых аккумуляторов для судов можно производить при помощи сжигания угля, используя излишки электроэнергии в ночное время, а также от расположенных в портах высокотемпературных ядерных реакторов.

Двигатель Стирлинга весьма эффективен для установки на небольшие суда. Так фирма «Юнайтед Стирлинг» установила одноцилиндровый ДС мощностью 10 л. с. на серийно выпускаемом катере типа "Альбин" длиной 10 м, обеспечив скорость катера 7 уз. Двигатель был установлен в корме и снабжен реверс-редуктором. Уровень шума, который был измерен на расстоянии 1 м от двигателя, работающего на полной нагрузке без какого-либо глушителя, составлял всего 68 дБ, что на 20 дБ меньше, чем у ДВС.

Аналогичные испытания проведены на катере «Стирлинг Силенса» датской постройки. Катер развил скорость 13 уз, работа двигателя оказалась надежной, вибрации не ощущались. Можно полагать, что при серийном выпуске ДС вытеснят ДВС на малых судах.

Одно из специфических качеств двигателя Стирлинга - способность работать с тепловым аккумулятором без атмосферного воздуха может быть успешно реализовано на подводных аппаратах. Полное отсутствие загрязнения водной среды, возможность многократного и быстрого разогрева материала теплоаккумулятора на судне обеспечения позволяют эффективно использовать такой аппарат при любых видах подводных исследований и работ.

Энергозапас силовой установки с ДС и тепловым аккумулятором (с расплавом фтористого лития) в 8-10 раз больше, чем у обычной системы со свинцовокислотными аккумуляторами и электродвигателем постоянного тока.

Двигатель Стирлинга, в отличие от электро двигателя, даже при самом высоком КПД выделяет в окружающую среду много тепла. Поэтому подводный буксировщик с ДС легко приспособить для одновременного обогрева водолаза.

Согласно полученным автором экспериментальным данным, стандартного пятилитрового баллона с пропаном хватает для непрерывной работы самодельного ДС мощностью 0,1 кВт в течение 40 часов. Такой лодочный мотор удобен и надежен в эксплуатации, исключает загрязнение водоемов.

Итак, есть все технико-экономические предпосылки для того, чтобы двигатели Стирлинга мощностью до 1 кВт нашли применение на подводных буксировщиках и в качестве массового лодочного мотора. Дело в том, что при серийном производстве стоимость таких двигателей упрощенной конструкции, по моим предварительным расчетам, уже в настоящее время не может превышать стоимости обычных подвесных лодочных моторов с ДВС.

Размещено на сайте 12.03.2009.

5 ПРЕДИСЛОВИЕ КАФЕДРЫ ПРОГНОЗОВ

Добрый день, уважаемые читатели.

Наша серия выпусков про автомобили была бы не полной, если бы не рассмотрели автомобили на двигателе внешнего сгорания, которые были придуманы в 1816 году шотландским священником Робертом Стирлингом.

Побудительным мотивом изобретателя было огромное количество травм, которые получали рабочие на производствах эпохи промышленной революции в Англии.

История техники сообщает только об одном опыте строительства автомобилей

на основе использования этого двигателя. Это произошло в 1972 году. Изображения этого автомобиля я не нашёл, зато отыскалась очень интересная статья российского инновационного центра, которую я с удовольствием представляю сегодня.

Для квалифицированного чтения предлагаю небольшой общеобразовательный экскурс в эту область, которую я оформил в виде дайджеста из нескольких цитат.

Источник тепла нагревает газ в правой части теплообменного цилиндра. Газ разширяется и через трубку оказывает давление на рабочий поршень. Поршень опускается, толкает шатун и поворачиает маховик. При этом одновременно в право двигатется вытеснительный поршень. Он вытесняет газ из нагревающейся части теплообменного цилиндра в его холодную часть, которая имеет охлаждающееся оребрение. Теплообменный поршень заполнен теплоизолирующим материалом. Газ остывает, создавая обратное усилие на рабочий поршень, поршень поднимается вверх и цикл повторяется с начала.

Стирлинга двигатель, двигатель внешнего сгорания, двигатель с внешним подводом и регенерацией тепловой энергии, преобразуемой в полезную механическую работу. С. д. назван по имени английского изобретателя Р. Стирлинга (R. Stirling; 1790—1878), который в 1816—40 создал двигатель с незамкнутым циклом, работавший на подогреваемом воздухе. Двигатель имел несовершенный регенератор (теплообменник), был громоздким и тяжёлым, вследствие чего не нашёл применения. Современый С. д. работает по замкнутому регенеративному циклу (циклу Стирлинга), состоящему из последовательно чередующихся двух изотермических и двух изохорических процессов. Рабочее тело С. д. — гелий или водород под давлением 10—14 Мн/м2 (100—140 кгс/см2 ) находится в замкнутом пространстве и во время работы не заменяется, а лишь изменяет объём при нагревании и охлаждении. Регенератор как бы разделяет это пространство на верхнюю (горячую) и нижнюю (холодную) полости (рис. 1). К верхней полости тепло подводится от нагревателя, от нижней отводится охладителем, в котором циркулирует вода. В цилиндре С. д. находятся 2 поршня — рабочий и вытеснитель. Горячая и холодная полости соединяются между собой каналами, проходящими через нагреватель, регенератор и охладитель. Рабочий цикл С. д. осуществляется за 4 такта (рис. 2).

Отношение мощности к массе у двигателя Стирлинга сопоставимо с аналогичным показателем дизельного двигателя с турбонаддувом. Удельная мощность на выходе такая же, как и у дизельного двигателя. Крутящий момент практически не зависит от скорости. Двигатель Стирлинга реагирует на изменения нагрузки аналогично дизелю, однако требует более сложной системы регулировки, он более сложен, чем обычные тепловые двигатели. Стоимость его изготовления выше стоимости изготовления ДВС, однако, расходы на эксплуатацию гораздо меньше

Технологии, разработанные в 1816 году шотландцем Робертом Стирлингом, работают и сегодня! Цикл Стирлинга использует внешний источник тепла, которым может быть что угодно - сгорающий бензин, солнечная энергия или даже тепло, производимое компостными бактериями. Внутри цилиндров горения топлива нет!!! Основные качества двигателя Стирлинга - экономичность, невысокие уровни производимых при работе шумов и вибраций, возможность использовать различные виды топлива и малая токсичность отработавших газов. Сегодня двигатели Стирлинга используются только в некоторых очень специализированных областях, например, в подводных лодках или как вспомогательные генераторы на яхтах, где требуется тишина.

Машины Стирлинга - это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема. В качестве рабочего тела используются газообразные природные вещества (гелий, азот, сухой воздух и др.). Термодинамический цикл рассматриваемых машин был предложен в 1816 году шотландцем Робертом Стирлингом. С середины 19 века словосочетание «машина Стирлинга» стало широко употребляться как в классической термодинамике, так и бытовом обиходе. Цикл Стирлинга состоит из двух изотерм и двух изохор. Наличие двух изотерм определяет равенство термодинамической эффективности идеального цикла Стирлинга и цикла Карно. Поэтому машины, работающие по циклу Стирлинга, одни из самых высокоэффективных машин в мире. К достоинствам машин, работающих по циклу Стирлинга, следует отнести высокую степень экологической чистоты как самих рабочих тел машин Стирлинга, так и отработанных сред, возникающих при их эксплуатации, а также энергетическую эффективность.

Машины СТИРЛИНГА - новое перспективное направление в развитии отечественного машиностроения.

До недавнего времени системы автономного энергоснабжения, использовавшие традиционные тепломеханические агрегаты, удовлетворяли существующему уровню развития общества и техники. Однако обострение общенациональных, глобальных проблем, требующих срочного решения (истощение природных ресурсов; надвигающийся энергетический кризис; загрязнение окружающей среды; уменьшение озонового слоя Земли; усиление "парникового эффекта" и т.д) привело к необходимости принятия в конце XX века ряда крупных международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, прекращение производства озоноразрушающих веществ и фреона R-12, как холодильного агента для парокомпрессионных холодильных машин (ПКХМ), ресурсо - и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д..

Огромные масштабы, удорожание производства топливно - энергетических ресурсов и растущее загрязнение окружающей среды выдвинули на первый план задачу поиска новых технологий энергопреобразования, разработки новой техники на основе высокоэффективных термодинамических циклов, использование новых видов топлива, новых рабочих тел и т.д., то есть создание таких экологически чистых энергосистем, которые бы обеспечивали удовлетворение нужд промышленности и населения при минимальных затратах материальных ресурсов. Наряду с другими подходами, в решении стоящих перед Российской Федерацией экологических и энергетических проблем, наиболее перспективным путем является разработка и широкое внедрение энергопреобразующих систем на основе машин, работающих по прямому и обратному циклам Стирлинга (машины Стирлинга).

В настоящее время разработано большое количество компоновочных схем и конструктивного исполнения отдельных узлов машин Стирлинга. Так, только одних приводов известно более 18 типов. Однако наиболее широкое распространение получили машины Стирлинга, выполненные по a , b , g - схемам. Конструктивно, машины Стирлинга представляют собой удачное сочетание в одном агрегате компрессора, детандера и теплообменных устройств: теплообменника нагрузки (нагревателя или конденсатора), регенератора и холодильника.

На последних европейских и мировых форумах по современному состоянию и перспективам развития машин, работающих по циклу Стирлинга, отмечалось, что технология изготовления машин Стирлинга за рубежом полностью освоена. Решены проблемы уплотнений двигающихся деталей, выбора материалов, пайки теплообменников и т.д. Ввиду этого, наряду с традиционным применением двигателей и криогенных машин Стирлинга для военных целей (переконденсация низкокипящих жидкостей, охлаждение детекторов инфракрасного излучения, анаэробных систем автономного энергоснабжения и т.д.), перспективными направлениями считаются применение холодильных машин Стирлинга на уровне умеренного холода для хранения пищевых продуктов и систем кондиционирования воздуха, использование двигателей Стирлинга в когенерационных установках, тепловых насосах в системах децентрализованного теплоснабжени и т.д.

Подтверждением возрастающего интереса к машинам Стирлинга служит тот факт, что начиная с 1982 года каждые два года проводится международная конференция по двигателям Стирлинга, а в г. Оснабрюк (Германия) раз в два года проходит Европейский форум по двигателям Стирлинга. Кроме того ежегодно в США проходит конференция, посвященная преобразованию различных видов энергии, на которой работает секция по двигателям Стирлинга. В Великобритании создано общество по изучению двигателей Стирлинга, членами которого являются свыше 300 ученых всего мира. Обществом ежеквартально, начиная с 1996 года, издается журнал “ UK Stirling News ”. В США ежеквартально, начиная с 1978 года, издается журнал “ Stirling Machine World ”. Ежегодно издается одна-две книги, посвященные машинам Стирлинга.

Принципиальными особенностями цикла Стирлинга являются:

Цикл характеризуется нестационарными во времени параметрами потоков рабочего тела в каждой точке системы. Практически это означает, что машина Стирлинга, рабочие полости которой входят в один объем, неизбежно должна быть машиной с периодическим изменением объемов сжатия и расширения, т.е. поршневой машиной. В виду этого преимущественные области применения таких машин - малые и средние мощности;
-цикл предназначен только для работы с газообразным рабочим телом. Чтобы размеры машин при заданной мощности были приемлемы, а внешний и внутренний теплообмен рабочего тела в этих условиях проходил достаточно эффективно, давление в машине должно быть существенно выше атмосферного. По тем же причинам рабочее тело должно иметь малую вязкость, возможно большую теплопроводность и теплоемкость, мало зависящую от давления (иначе возникнут большие собственные потери в регенераторе вследствие различных тепловых эквивалентов теплообменивающихся потоков);
-в цикле регенерация тепла позволяет работать в большом интервале температур (верхняя и нижняя температуры цикла) при относительно малых отношениях давлений сжатия и расширения;
-для реализации цикла в качестве рабочих тел могут быть использованы водород, гелий, азот, воздух и другие газообразные вещества. Использование в качестве рабочего тела газов с высоким значением газовой постоянной (R), например водорода или гелия, позволяет получать в машинах Стирлинга эксергетический* к.п.д. свыше 50%;
-универсальность цикла, на его основе возможно создание как преобра-зователей прямого цикла, так и обратного цикла.

· (примечание КП. Про «эксергетические методы анализа»,: это подход, опирающийся на использование термодинамических потенциалов при анализе процессов превращения энергии в системе см. , , .)

Цикл Стирлинга в преобразователе прямого цикла состоит из четырех процессов: - процесс изотермического сжатия, теплота от рабочего тела с температурой Т сж передается окружающей среде; - процесс при постоянном объеме, теплота от насадки регенератора передается рабочему телу; - процесс изотермического расширения, теплота от внешнего источника с температурой Т max передается рабочему телу; - процесс при постоянном объеме, теплота от рабочего тела передается насадке регенератора.

Цикл Стирлинга в преобразователе обратного цикла также состоит из четырех процессов. Различие с двигателем состоит в том, что температура внешнего источника, от которого подводится теплота в процессе расширения, ниже, чем температура рабочей жидкости, отводящей теплоту в процессе сжатия. В случае холодильной машины, теплота отводится из холодной полости в процессе расширения 3 ’-4’. Работа сжатия (площадь 1-2-5-6) как для двигателя, так и для холодильной машины одна и та же. Работа расширения (площадь 4’-3’-5-6) в холодильной машине меньше работы сжатия, и для реализации данного цикла необходима энергия, подводимая от внешнего источника, эквивалентная площади 1-2-3’-4’. При переходе из полости сжатия в полость расширения в процессе 2-3’ температура рабочего тела уменьшается, в а процессе 4’-1 соответственно увеличивается.

Машины, работающие по прямому циклу Стирлинга - двигатель Стирлинга

В мировых обзорах по энергопреобразующей технике, двигатель Стирлинга рассматривается как двигатель, обладающий наибольшими возможностями для дальнейшей разработки. Низкий уровень шума, малая токсичность отработанных газов, возможность работы на раз-личных топливах, большой ресурс, сравнимые размеры и масса, хорошие характеристики крутящегося момента - все эти параметры дают возможность машинам Стирлинга в ближайшее время значительно потеснить двигатели внутреннего сгорания (ДВС). Двигатель Стирлинга относится к классу двигателей с внешним подводом теплоты (ДВПТ). В связи с этим, по сравнению с ДВС, в двигателях Стирлинга процесс горения осуществляется вне рабочих цилиндров и протекает более равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура, при отсутствии газораспределительного механизма клапанов. Необходимо отметить, что рядом зарубежных фирм начато производство двигателей, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки (ГТУ).

90° V-двухцилиндровый мотор Стирлинга Германской фирмы SOLO " СОЛО Стирлинг 161 "

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая эффективность равна максимальной эффективности тепловых машин (эффективность цикла Карно). Он работает за счет теплового расширения газа, за которым следует сжатие газа после его охлаждения. Двигатель Стирлинга содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно находящейся при температуре окружающей среды) и «горячей» частью, которая обычно нагревается за счет сжигания любого вида топлива или других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания. К началу 90-х годов прошлого столетия работы по созданию двигателей Стирлинга проводились такими известными фирмами, как ‘Philips” (Нидерланды), “General Motors Co”, “Ford Motor Co”, “NASA Lewis Research Center”, “Los Alamos National Laboratory” (США), “MAN-MBW” (Германия), “Mitsubishi Electric Corp.”, “Toshiba Corp.” (Япония). В течение последнего десятилетия к работам по созданию двигателей Стирлинга приступили также в “Daimler Benz” и “Cummins Power Generation” (СPG) и ряд других крупных фирм.

Машины, работающие по обратному циклу Стирлинга - холодильные машины Стирлинга.

Одним из наиболее перспективных направлений развития холодильной техники в XXI веке является создание и применение холодильных машин Стирлинга умеренного холода (ХМС УХ). Теоретически эффективность холодильных машин Стирлинга умеренного холода равна эффективности идеальной холодильной машины, работающей по циклу Карно. В качестве рабочих тел для машин Стирлинга обратного цикла могут применяться вещества, полностью отвечающие требованиям Венской конвенции по охране озонового слоя и Монреальского протокола по озоноразрушающим веществам. Поэтому широкое внедрение холодильных машин Стирлинга умеренного холода уже в ближайшее время позволило бы в комплексе "эффективность + экологи-ческая чистота" решить проблему создания соответствующих современным требованиям систем холодоснабжения. Современный диапазон производства данных машин колеблется от 1 до 100 кВт, что обеспечивает их использование в системах холодоснабжения во многих областях промышленности и торговле. Преимуществами ХМС УХ являются: высокое значение холодильного коэффициента, широкий диапазон использования в области умеренного холода (от 0 до -80 0С) и экологическая чистота рабочих тел (гелий, водород, азот, воздух). За рубежом уже начато серийное производство холодильных машин Стирлинга умеренного холода по своей эффективности и экологической чистоте превосходящих существующие холодильные машины, работающие по другим циклам, в том числе и парокомпрессионные холодильные машины.

Анализ современной зарубежной научно-технической информации позволяет утверждать, что в промышленно развитых странах в последние 10 лет начались интенсивные научно-исследовательские и опытно-конструкторские работы по подготовке к серийному производству холодильных машин Стирлинга. Уже сейчас на зарубежные рынки начало поступать новое холодильное оборудование с использованием машин данного цикла. Ярким примером перспективности холодильных машин Стирлинга является начало серийного производства с 2004 года таким гигантом, как южнокорейская корпорация «LG Electronic Inc» домашних холодильников на основе холодильных машин Стирлинга с линейным приводом.

Проблемы создания высокоэффективных машин Стирлинга.

Зарубежный опыт создания современных высокоэффективных машин Стирлинга показывает, что без точного математического моделирования рабочих процессов и оптимального конструирования основных узлов, доводка проектируемых машин превращается в многолетние изнурительные экспериментальные исследования. В настоящее время западные фирмы, ведущие разработки в данной области, в основном опираются на теоретические и экспериментальные исследования своих научных подразделений, технических университетов или создают технопарки по разработки отдельных типов машин Стирлинга. Далее, это сложность конструктивного исполнения отдельных узлов, проблемы в области уплотнений, регулирования мощности и т.д. Особенности конструктивного исполнения обуславливаются применяемыми рабочими телами. Так, например, гелий, обладает сверхтекучестью, что определяет повышенные требования к уплотняющим элементам рабочий поршней, штока вытеснителя и т.д. Формирование облика перспективных, предполагаемых к производству машин Стирлинга невозможно без разработки новых технических решений основных узлов. Третья проблема - это высокий уровень технологии производства. Данная проблема связана с необходимостью применения в машинах Стирлинга жаростойких сплавов и цветных металлов, их сварки и пайки. Отдельный вопрос изготовление регенератора и насадки для него, для обеспечения с одной стороны высокой теплоемкости, а другой стороны, низкого гидравлического сопротивления. Все это требует высокой квалификации рабочего персонала и современного технологического оборудования.

В заключении, говоря о проблемах создания машин Стирлинга, необходимо сделать два вывода:
- высокая наукоемкость данной области техники является основным сдерживающим фактором широкого распространения машин, работающих по циклу Стирлинга;
- успех в создании конкурентоспособных на мировом рынке машин Стирлинга может быть достигнут только как результат синтеза высокого уровня научных исследований, тщательной конструктивной проработки основных узлов машин Стирлинга и передовой технологии производства.

Анализ отечественных разработок в области машин Стирлинга.

Перспективность производства и широкого применения машин Стирлинга в различных областях отечественной экономики обусловлена наличием в России более чем 30-ти летнего технологического опыта, накопленного при производстве криогенных газовых машин Стирлинга. Фирмами-производителями холодильного оборудования с криогенными машинами Стирлинга являются ОАО «Машиностроительный завод «Арсенал», НПО «Гелиймаш» и др. Однако, необходимо отметить, что выпускаемые этими предприятиями КГМ Стирлинга, не являются отечественными разработками, а представляют собой копии криогенных машин, ранее выпускаемых голландскими фирмами "N.V. Philips Gloeilampenfabrieken" ("Филипс") и “Werkspoor”.

В России неоднократно предпринимались попытки создания отечественных двигателей и холодильных машин Стирлинга, однако они, из-за отсутствия адекватных методов расчета и трудностей финансового порядка, серьезного успеха не имели. Так, на АОЗТ «АРСМАШ» с 1991 по 1994 год проводились работы по исследованию перспективных холодильных установок для авторефрижераторной техники. Проведенный анализ показал, что в качестве наиболее перспективного холодильного агрегата может выступать только холодильная машина Стирлинга. В виду этого были созданы опытные образцы холодильных машин производительностью до 5 кВт, работающих в диапазоне от 285 К до 230 К, которые по эффективности и массогабаритным характеристикам соответствовали современным ПКХМ для авторефрижераторной техники. Была разработана проектно-сметная и конструкторская документация на ее серийное изготовление. Однако в связи с общим спадом в экономике и финансовыми трудностями заказчика работы по данному проекту были остановлены.

В 1996 году на ОАО “Машиностроительный завод “АРСЕНАЛ”, в рамках договора с ГП ГОКБ “Прожектор” были начаты работы по теме “Исследование и разработка электроагрегатов на базе многотопливных двигателей Стирлинга”. Указанная тема входила под шифром “Стирлинг” в комплексную НИР “Передвижка”, включенную постановлением Правительства РФ от 02.03.96 N 227-15 в государственный заказ. Из-за отсутствия реального финансирования из федерального бюджета данные работы не были завершены в полном объеме.

В 1997-1998 гг., на ОАО “МЗ”АРСЕНАЛ” был разработан пакет документов на заявку о включении в Федеральную программу реструктуризации и конверсии оборонных предприятий темы: “Разработка и создание производства экологически чистых двигателей с внешним подводом теплоты, рефрижераторов, тепловых насосов и анаэробных энергоустано-вок на основе цикла Стирлинга”. Проект не предусматривал дополнительных строительных работ, поскольку выпуск новой продукции планировалось осуществить за счет загрузки высвободившихся после конверсии производственных мощностей завода. При успешной реализации вышеуказанного проекта планировалось к 2004 го-ду наладить мелкосерийное производство двигателей и холодильных машин Стирлинга производительностью до 100 кВт. Однако, данные работы из-за отсутствия финансирования пока не реализованы.

В настоящее время сложилась достаточно парадоксальная ситуация, которая заключается в том, что Россия обладает многолетним опытом и технологией производства машин Стирлинга, но не имеет опыта собственных разработок, серийно выпускаемых машин Стирлинга. Данная ситуация обусловлена в основном тем обстоятельством, что в последние 15 лет в России из-за экономического кризиса сложилась крайне неблагоприятная инновационная атмосфера, во многих российских научных организациях, в которых ранее велись работы по тематике создания машин Стирлинга, например, МВТУ им. Баумана, ВНИИГТ, ОмПИ (ТУ), СПбГТУ (Политехнический университет), ЦНИДИ и др., исследования из-за финансовых трудностей были полностью прекращены. В то же время за рубежом именно за последние 15 лет были достигнуты наиболее существенные результаты в создании высокоэффективных машин Стирлинга.

«Инновационно-исследовательский центр «Стирлинг-технологии».

Учитывая перспективность машин Стирлинга, специалистами ООО «Инновационно-исследовательский центр «Стирлинг - технологии» в последние годы был проведен ряд теоретико - экспериментальных исследований, в результате которых была разработана новая методология проектирования и расчета машин данного цикла. Данная методология включает в себя несколько "ноу-хау", среди которых: уникальный метод двухуровневой многопараметрической оптимизации машин Стирлинга; структурный синтез машин Стирлинга на основе метода функцио-нально-эксергетического анализа сложных тепломеханических устройств; оптимальное конструирование на основе ТРИЗ (выделено КП) . Разработанная методология проектирования и расчета машин Стирлинга позволяет сократить сроки создания новых типов машин Стирлинга до 1,5-2 лет, с эффективностью, соответствующей лучшим мировым аналогам

На основании предложенных технических решений, специалистами ООО «Инновационно - исследовательский центр «Стирлинг - технологии» только за 1994-2003 году было подано более 150 заявок на предполагаемые изобретения. Особое внимание уделялось проработке отдельных узлов машин Стирлинга и их конструктивного исполнения, а также, созданию новых принципиальных схем установок различного функционального назначения. Практика показала, что оптимальное конструирование позволит в значительной степени сокра-тить суммарную удельную стоимость машин при их опытном изготовлении и серийном производстве. Предлагаемые технические решения, с учетом того, что машины Стирлинга менее дороги в эксплуатации, позволяют повысить их экономическую рентабельность по сравнению традиционными преобразователями энергии. Дальнейшее широкое распространение машин Стирлинга будет связано с развитием теории проектирования многоцилиндровых машин данного цикла, что позволит создавать двигатели и холодильные машины производительностью до 1000 кВт.

Когенерационные установоки с многотопливными двигателями Стирлинга.

Стирлинг-когенерация - новая технология для комбинированного производства электроэнергии и тепла, на основе двигателей Стирлинга, при которой энергия охлаждающей воды и отработанных газов используется для нужд теплоснабжения потребителей. Эффективность применения двигателя Стирлинга в когенерационных установках, по сравнению с ДВС, обусловлена особенностью его теплового баланса. Потери теплоты с отработанными газами и в охлаждающую воду для двигателя Стирлинга составляет, соответственно, 10% и 40%, что с учетом более высокого к.п.д. самого двигателя, позволяет создавать компактные и высокоэффективные когенерационные установки.

Когенерационная установка мощностью 9,5 кВт электрической энергии и 30 кВт тепловой энергии.

Преимущества использования когенерационных установок с двигателями Стирлинга на местном топливе в регионах РФ:

Независимость от конъюнктуры рынка нефти и природного газа.
---Возможность загрузки местных предприятий на производство оборудования для заготовки и переработки местного топлива.
---Отсутствие необходимости создания хранилищ для запасов углеводородного топлива и его транспортировки.
---Отсутствие необходимости прокладки и обслуживания электросетей при электрификации отдаленных районов.
---Значительное сокращение расходов региональных бюджетов на закупку привозного топлива.
---Значительное сокращение расходов компаний нефтегазового комплекса на закупку привозного топлива за счет использования в качестве моторного топлива попутного нефтяного газа.

1..Стоимость 1 кВт/ч производимой электроэнергии с помощью когенерационной установки будет составлять от 30 до 50 коп., что в 2-3 раза дешевле существующих тарифов. (выделено КП)
2..Примерно в 2 раза увеличивается ресурс преобразователя прямого цикла когенерационной установки, по сравнению с ДВС.
3..При сгорании топлива содержание СО в обработанных газах в 3 раза ниже и значительно ниже содержание NO и СH, что соответствует самым жестким мировым экологическим стандартам.
4..Срок окупаемости когенерационных установок 2,5 года.

Модернизация котельных агрегатов в мини - ТЭЦ на основе применения двигателя Стирлинга.

ООО "ИИЦ "Стирлинг-технологии" - компания, работающая в области создания высокоэффективных инноваций для теплоэнергетического комплекса РФ. Специалистами компании разработана новая, не имеющая в мире аналогов, технология перевода существующих котельных станций теплоснабжения в мини-ТЭЦ за счет двигателей Стирлинга.

Пример компоновки оборудования при модернизации котельного агрегата в мини - ТЭЦ на основе применения утилизационной установки с двигателем Стирлинга.

Без изменения существующей конструкции котельной станции теплоснабжения, установка в дымоходе котельного агрегата нагревателя двигателя Стирлинга позволяет осуществлять преобразование теплоты уходящих дымовых газов в полезную механическую и электрическую энергию. Утилизация теплоты уходящих газов с помощью двигателя Стирлинга является наиболее перспективным направлением повышения экономичности котельного агрегата. Предлагаемая технология может быть эффективно использована при модернизации котельных различной мощности. Полученная электрическая энергия может быть использована как для покрытия потребностей в электроэнергии на собственные нужды котельной, так и выработки электроэнергии во внешнюю электросеть. Экономическая эффективность использования утилизационных установок с двигателями Стирлинга при модернизации котельных станций теплоснабжения:
1.Стоимость 1 кВтч производимой электроэнергии с помощью утилизационной установки с двигателем Стирлинга в 8 раза дешевле существующих тарифов центрального электроснабжения.
2.Срок окупаемости инвестиций при модернизации котельных в мини-ТЭЦ на основе применения утилизационных установок с двигателем Стирлинга не превышает 3 лет, в зависимости от исходных технико-экономических данных.

Использование биомассы при применении двигателя Стирлинга.

Пример компоновки твёрдотопливной установки с двигателем Стирлинга ООО "ИИЦ "Стирлинг-технологии".

Германская фирма "SOLO Stirling Engine" занимается разработкой систем Стирлинг - Когенерации с непосредственным использованием твердого горючего, преимущественно древесины, но сталкивается с некоторыми трудностями, как например удаление шлака из камеры сгорания или предотвращение спекания частиц топлива. Исследования при помощи Газогенератора летом 1998 показали, что произведенный там древесный газ, улучшает процесс сжигания твёрдого топлива и смол. Комбинация Газогенератора с Стирлинг - Когенерацией является высоко эффективным устройством, так как горячий газ получаемый из Газогенератора не нуждается в охлаждении для применения в Стирлинг - Когенерации.
Специалисты ООО «Инновационно - исследовательский центр «Стирлинг - технологии» в России, тоже активно занимаются разработкой аналогичных систем, например проектирование энергоснабжения коттеджного городка с использованием двигателей Стирлинга, работающих на генераторном газе из торфа. В тоже время ведуться разработки твёрдотопливных установок с двигателем Стирлинга, работающих на древесной щепе, угле и угольной пыли, торфе, сланцах, отходах сельского хозяйства и навозе, бытовом мусоре и т.д..

Солнечные энергосистемы.

Солнечная версия двигателя "Стирлинг 161", Германской фирмы SOLO системы (EURODISH).

Солнечная версия двигателя Стирлинг 161 используется между тем несколькими производителями в различных исполнениях. На испанском солнечном плато de Алмерию с 1997 работают 6 систем. В рамках поддержанного ЕС проекта в сотрудничестве с Schlaich Bergermann und Partner und MERO Raumsysteme GmbH, кроме всего прочего, теперь строится новое поколение системы Dish Стирлинг 10 кВт. Целью проекта является сокращение стоимостей капиталовложений до 5.000 евро / киловатт. При этом снова вступает в действие Стирлинг 161 при модификациях в Receiver, Cavity и корпусе. Характеристики нового Dish/Стирлинга системы (EURODISH): номинальная производительность СОЛО "Стирлинг 161" 10,0кВт брутто, диаметр солнечного зеркала 8,5м. В Alanya, центр исследования солнечной энергии Турции создал Kombassan холдинг - компанию, которая строит на подготовительных работах Cummins. Работы очень интенсивны и показывают хорошие результаты.

ПОСЛЕСЛОВИЕ КАФЕДРЫ ПРОГНОЗОВ

Вопросы, которые у меня возникают - естественны для избранного контекста обзора истории автомобилестроения.

Может ли повториться это техническое решение в условиях современных реалий экономического кризиса, когда все стараются «экономить»?

Рассмотрим варианты:

1. Мотор Стирлинга как единственный двигатель для автомобиля. Развитие сценария - «всеядный автомобиль».

Мой ответ - нет. В мире достаточно пока что и нефти и газа. В производстве и обслуживании бензиновых- дизельных ДВС занято столько людей и капиталов, что говорить о феномене «подрыва» я не вижу серьёзных оснований.

2.Может ли быть построен гибрид по схеме «ЛЮБОЕ топливо- Мотор - Стирлинга- электромотор»?

Очень похожий сценарий пытались реализовать в 1965 году в авиации.

Самолёт ИЛ -18П сам по себе - загадка. У меня есть предположение, что это был некий розыгрыш или специально созданная дезинформация, утечка которой может отвлечь денежные ресурсы конкурентов в неэффективное направление.

Такие примеры были в истории техники. Например, в начале 70ых годов, было принято решение развивать в СССР вычислительную технику по пути больших виртуальных машин серии ЕС. Я до сих пор помню великолепный афоризм своего преподавателя по программированию на Ассемблере: «Машины серии ЕС есть наилучший пример научно-технической диверсии США против СССР».

Это был тупиковый путь развития вычислительной техники, который средствами западных СМИ и умелыми действиями спецслужб стал для нас магистральным и добавил нашего отставания в развитии производства компьютеров. Огромные деньги были истрачены «не туда».

Может быть ситуация с паровым самолётом есть что-то похожее.

Ответ КП на вариант 2: «едва ли». Обоснования те же, что и в варианте 1.

3. Может ли быть построен гибрид по схеме «ДВС + рекуперация тепловой энергии с помощью мотора Стирлинга»? У бензинового- дизельного ДВС 70-75%

энергии топлива уходит в тепло и трение.

Сразу возникает развилка, подвариант А : получить на борту два вида механической энергии: от ДВС и от Стирлинга? подвариант Б: Получить на борту механику от ДВС и электроэнергию для электромотора.

Если вариант Б укладывается в общую концепцию проектирования многих современных гибридных автомобилей, где процессы рекуперации считают, целеполагающими, то варианту А большого количества примеров устойчивого успеха привести не могу.

В этих дирижаблях 1958ого и 1966 года использовались ДВА вида подъёмной силы: архимедова и от эффекта Магнуса. Как мы видим, эти технические решения появились после заката эры воздухоплавания. И мы ничего не знаем об их истинных свойствах. Только факты о проведённых НИОКР.

Можно, конечно говорить о том, что Парусно- винтовое судно или пароход с гребными колёсами и парусами одновременно являются такими примерами, но они всё же не вполне корректны, т.к. энергия ветра в этих этим системах всё-таки находится в Надсистеме и может использоваться независимо, а вариант А, всё-таки подразумевает утилизацию тепловой энергии, которая создаётся внутри ТС в процессе эксплуатации.

Говоря о моторах Стирлинга можно надеяться на то, что они могут получить импульс развития от кризиса как всеядные маленькие электростанции, но едва ли они «проникнут» в автомобиль. Окклюзия водорода и гелия, проникновение этих веществ сквозь металлические стенки, растворение их в металле - явление далеко не академическое, а вполне техническое. Огромные рабочие давления в сочетании с транспортной вибрацией тоже заставляет предполагать большие проблемы с обходом противоречия: «для увеличения долговечности необходимы толстые стенки, но это уменьшает теплопередающие способности стенок и увеличивает вес мотора».

Мы совсем не обсудили другое свойство этих удивительных машин. Возможность использовать их и как тепловые насосы. Это яркие проявления принципа инверсии, которым изобилует история всех машин, где есть нагревание, но об этом можно говорить часами. Сделаем как-нибудь отдельный выпуск об этом.

Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.

Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей - тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.

Двигатель Стирлинга: физическая сторона вопроса

Для понимания, как работает настольная электростанция на Стирлинге , следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.

При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.

Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.

Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт .


Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.

Современные конфигурации Стирлинга

Современная инженерия различает три основных вида подобных двигателей:

  • альфа-стирлинг, отличие которого в двух активных поршнях, расположенных в самостоятельных цилиндрах. Из всех трех вариантов данная модель отличается самой высокой мощностью, обладая самой высокой температурой нагревающегося поршня;
  • бета-стирлинг, базирующийся на одном цилиндре, одна часть которого горячая, а вторая холодная;
  • гамма-стирлинг, имеющий кроме поршня еще и вытеснитель.

Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.

Преимущества и недостатки

Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.

Настольная электростанция Стирлинга, которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:

  • большие размеры, которые вызваны потребностью к постоянному охлаждению работающего поршня;
  • использование высокого давления, что требуется для улучшения характеристик и мощности двигателя;
  • потеря тепла, которая происходит за счет того, что выделяемое тепло передается не на само рабочее тело, а через систему теплообменников, чей нагрев приводит к потере КПД;
  • резкое снижение мощности требует применения особых принципов, отличающихся от традиционных для бензиновых двигателей.

Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:

  • любой вид топлива, поскольку как любые двигатели, использующие энергию тепла, данный двигатель способен функционировать при разнице температур любой среды;
  • экономичность. Данные аппараты могут стать прекрасной заменой паровым агрегатам в случаях необходимости переработки энергии солнца, выдавая КПД на 30% выше;
  • экологическая безопасность. Поскольку настольная электростанция кВт не создает выхлопного момента, то она не производит шума и не выбрасывает в атмосферу вредных веществ. В виде источника получения мощности выступает обычное тепло, а топливо выгорает практически полностью;
  • конструктивная простота. Для своей работы Стирлинг не потребует дополнительных деталей или приспособлений. Он способен самостоятельно запускаться без использования стартера;
  • повышенный ресурс работоспособности. Благодаря своей простоте, двигатель может обеспечить не одну сотню часов беспрерывной эксплуатации.

Области применения двигателей Стирлинга

Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.

Видео материал: YouTube.com/watch?v=fRY6rkuw3LA

Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород.

Сегодня о двигателе Стирлинга.
(много интересного видео)
Часть 1.
Для очень многих это неизвестно что такое, поэтому будет много теории.
Еще это чудесное изобретение называют двигателем внешнего сгорания.
Рабочий поршень заполнен воздухом или газом, а снаружи на него воздействует тепло.
Так что для такого двигателя бензин не нужен, он может работать на всем что выделяет тепло, солнце, дрова, уголь, газ, нефть, ядерное топливо. На всем где можно получить разницу температур, есть модели которые работают даже от тепла руки.


Работа двигателя от тепла чашки:

Достаточно сказать что холодильники, тепловые насосы и кондиционеры по сути тоже являются двигателями Стирлинга, только работающими в обратном направлении.

Промышленные солнечные установки где солнечный свет концентрируется на рабочем теле двигателя создавая огромный перепад температуры.
Мощность таких установок достигает 50-70 кВт.







КПД таких двигателей может быть от 5 на обычные модельки до 70% на промышленные варианты работающие под давлением 300 атмосфер, это на 50-70% выше двигателей внутреннего сгорания. Достаточно сказать что на космических аппаратах и новейших подводных лодках используются именно двигатели Стирлинга.

Это двигатель разработаный NASA для работы в космосе, мощность 2500 кВт.
рабочее тело в водороде под давлением 300 атмосфер.

Тогда возникает вопрос, почему же это чудо изобретение не стоит в каждом доме и дворе,
когда достаточно положить рабочее тело в обычный костер и наслаждаться наличием электричества? Ответ думаю очевиден, пока есть нефть и те кто ней владеет в обычном пользовании мы это не увидим.
Для контроля за запасами нефти развязываются войны и стираются целые государства.
Думаю что никого не удивляет что США несет демократию только в те страны где есть нефтедобыча, Сирия, Кувейт, Ирак, Ливия, Иран, Судан, Пакистан и тд.
И почему то нет никакого интересна к другим диктаторским режимам.

Это была лирика.
Промышленно изготовленный двигатель Стирлинга для бытовых целей продается, но цена его абсолютно не разумная в районе 20-25 тыс. долл. При мощности 5-7 кВт.
Желающих наверное не очень много.

Только совсем недавно немецкая фирма производящая бытовые котлы отопления, получила лицензию на установку в свои изделия двигателей с линейным генератором тока.
При тепловой мощности 16-20 кВт. (это примерно обогрев дома площадью 120-150 метров)
все излишнее тепло не выходит в трубу а преобразуется в электричество примерно 2 кВт.
Размер такой преобразователь имеет как термос на 3 литра.
Сложно сказать сколько будут стоить такие котлы, но заимев такой преобразователь,
вопрос электроснабжения был бы решен. Положил рабочее тело в костер или топку и все!
Можно себе представить как бы перевернулась энергозависимость, если бы в каждой котельной которая подает тепло на обогрев целых районов стояли в топках огромные Стирлинги высокого давления. Возможно на весь отопительный сезон можно было не зависеть от электростанций.
А собственно кто тогда будет приносить мега прибыль генерирующим компаниям?

В продаже можно встретить красивые, работающие модели Стирлинга,
но и модели стоят очень дорого, вот например та которая на фото стоит 32000 рублей.


Видео их работы:

Фото самодельных моделей



Видео работы самодельных двигателей:

Работают даже от солнца:

Более продвинутый и мощный аппарат с водяным охлаждением:

Интересное видео работы школьной модели:

Промышлеными образцами нас не балуют.
Но никто не может запретить изготовить такой двигатель самостоятельно, хоть он и будет намного менее надежным и производительным чем промышленный образец, но он будет всеядным, а это как раз то что нам нужно.
Для тех кто пробурился и нашел у себя в огороде нефть, это тема не для вас,
ищите схемы перегонных кубов.)))

История.
Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре.
Стоит сказать что первый промышленный Стирлинг проработал на механическом заводе приводя в действие механический молот 80 лет.
В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.
В основном есть три разновидности двигателя стирлинга.

Альфа-Стирлинг - содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Недостатки Стирлинга:
Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.
(тут да, подводную лодку или космический корабль нам раскурочить не дадут)
Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. (инерция, а нам как раз это и нужно для генератора.)

Преимущества:
Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.
КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения.
«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
Двигатель не будет «капризничать» из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие «двигатель заглох» не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала.
Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.
Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов).
В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации.
Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Подводные лодки
Преимущества «стирлинга» привели к тому, что ещё в первой половине 1960-х годов военно-морские справочники указывали на возможность установки на подводных лодках типа «Шёурмен» производства Швеции воздухонезависимых двигателей Стирлинга. Однако ни «Шёурмены», ни последовавшие за ними «Наккены» и «Вестеръётланды» указанные силовые установки так и не получили. И только в 1988 году головная субмарина типа «Наккен» была переоборудована под двигатели Стирлинга. С ними она прошла под водой более 10 000 часов. Другими словами, именно шведы открыли в подводном кораблестроении эру вспомогательных анаэробных двигательных установок. И если «Наккен» - первый опытный корабль этого подкласса, то субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка. Подобные двигатели установлены также в новейших японских подводных лодках

Одной из нетрадиционных областей применения двигателя Стирлинга есть медицина. Его применяют в системах искусственного сердца. Источником энергии в таких системах, как правило, есть радиоизотопы.

Пример применения двигателя для охлаждения процессора

Для нас плюсы всей этой технологии в том что грамотный человек сможет воспроизвести конструкцию из тех материалов которые будут под рукой, но для качественной и долговечной конструкции нужно подумать об этом заранее, уже сегодня.
Для каждого человек может такой двигатель быть источником энергии.
Если поселение больше 30-50 человек, то можно истопника придумать для круглосуточного
получения электричества. А электричество это ВСЕ.
Насосы, добыча воды, освещение, охрана периметра, работа электроинструмента, бытовые приборы, компьютер с собранными данными, в общем оплот цивилизации.
Инетесное видео от энтузиастов которые восстанавливают двигатели Стирлинга
успешно работавшие в начале прошлого века.

Что хочется сказать в заключении.
Вероятнее всего двигатель Стирлинга является панацеей в период БП для получения энергии,
как электрической так и механической.
Потому что не привязан к солнцу, которое светит днем, а электричество нужно ночью,
мало того когда света нужно больше всего зимой так на небе висят предательские тучи месяцами.
Не привязан к ветру, который дует когда хочет и как хочет, не знаю как у вас, у меня достаточный ветер дует 20 дней в году.
Не привязан к бензину и нефти, может в Тюмени и можно докопаться до нефти при желании,
у нас только если копать насквозь до залежей Венесуэлы.
Не привязан к напору и потоку воды, кому то и хорошо в предгорьях среди рек и ручьев, ближайшая от меня большая вода строго на север по горизонту 12 км или строго вниз 40 метров.

Стирлинг подарил нам свое уникальное изобретение которое можно и нужно реализовывать.
Удобство, надежность, всеядность как например обычная печка или топка.
Главное подбрасывать дрова в топку, или уголь, у кого как.

Спасибо за внимание, продолжение следует…

Из прошлого - в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя - стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.

Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.

Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.

С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.

Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.

В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.

По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично - на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.

1 - рабочий цилиндр, 2 - поршень; 3 - компрессор; 4 - всасывающий клапан; 5 - нагнетательный клапан; 6 - промежуточный резервуар; 7 - регенератор; 8 - перепускной золотник; 9 - выхлопная труба; 10 - всасывающая труба; 11 -топка.

И та и другая конструкции не отличались экономичностью. Зато неполадок с двигателем шотландца случалось почему-то больше, и он был менее надежным, чем двигатель Эриксона. Быть может, именно поэтому просмотрели одну очень важную деталь: при равных мощностях двигатель Стирлинга был компактнее. Кроме того, он имел существенное преимущество в термодинамике…

Сжатие, нагрев, расширение, охлаждение - вот четыре основных процесса, необходимых для работы любого теплового двигателя. Каждый из них можно проводить разными путями. Скажем, нагрев и охлаждение газа можно вести в замкнутой полости постоянного объема (изохорный процесс) или под движущимся поршнем при постоянном давлении (изобарный процесс). Сжатие или расширение газа может происходить при постоянной температуре (изотермический процесс) или без теплообмена с окружающей средой (адиабатический процесс). Составляя замкнутые цепочки из различных комбинаций таких процессов, нетрудно получить теоретические циклы, по которым работают все современные тепловые двигатели. Скажем, комбинация из двух адиабат и двух изохор образуют теоретический цикл бензинового мотора. Если заменить в нем изохору, по которой идет нагревание газа, изобарой - получится цикл дизеля. Две адиабаты и две изобары дадут теоретический цикл газовой турбины. Среди всех мыслимых циклов комбинация из двух адиабат и двух изотерм играет особо важную роль в термодинамике, так как по такому циклу - циклу Карно - должен работать двигатель с самым высоким к.п.д.

Если в двигателе Стирлинга подвод тепла производился по изохорам, то у Эриксона этот процесс происходил по изобаре, а процессы сжатия и расширения протекали по изотермам.

В начале нашего века движки Эриксона небольшой мощности (порядка 10-20 л. с.) нашли применение в различных странах. Тысячи таких установок трудились на фабриках, в типографиях, шахтах и рудниках, крутили валы станков, качали воду, поднимали лифты. Под названием «тепло и сила» они были известны и в России.

Предпринимались попытки сделать большой судовой двигатель, но результаты испытаний обескураживали не только скептиков, но и самого Эриксона. Вопреки пророчествам первых судно «сдвинулось с места» и даже пересекло Атлантический океан. Но и ожидания изобретателя были обмануты: четыре гигантских по размерам двигателя вместо 1000 л. с. развили всего 300 л. с. Расход угля получился такой же, как и у паровых машин. К тому же днища рабочих цилиндров к концу рейса прогорели насквозь, и в Англии двигатели пришлось снять и тайком заменить обычной паровой машиной. В довершение всех несчастий на обратном пути в Америку судно потерпело аварию и погибло со всем экипажем.

1 - рабочий поршень 2 - поршень-вытеснитель; 3 - охладитель; 4 - нагреватель; 5 - регенератор; 6 - холодное пространство; 7 - горячее пространство.

Отказавшись от мысли строить «калорические машины» большой мощности, Эриксон наладил массовый выпуск небольших двигателей. Дело в том, что уровень науки и техники того времени не позволял спроектировать и построить экономичную и мощную машину.

Но главный удар Эриксону нанесли изобретатели двигателя внутреннего сгорания. Бурное развитие дизелей и карбюраторных двигателей заставило предать забвению хорошую идею.

…Прошло столетие. В 30-х годах одно из военных ведомств поручает фирме «Филипс» разработать энергоустановку мощностью 200-400 вт для походной радиостанции. Причем двигатель должен быть всеядным, то есть работать на любом виде топлива.

Специалисты фирмы со всей основательностью принялись за дело. Начали с исследований различных термодинамических циклов и, к своему удивлению, обнаружили, что теоретически самый экономичный - давно забытый двигатель Стирлинга.

Война приостановила исследования, но в конце 40-х годов работы были продолжены. И тогда в результате многочисленных экспериментов и расчетов было сделано новое открытие - замкнутый контур, в котором под давлением около 200 атм. циркулировало рабочее тело (водород или гелий, как обладающие наименьшей вязкостью и наибольшей теплоемкостью). Правда, замкнув цикл, инженеры вынуждены были позаботиться об искусственном охлаждении рабочего тела. Так появился охладитель, которого не было у первых двигателей внешнего сгорания. И хотя нагреватель и охладитель, как бы компактны они ни были, утяжеляют стирлинг, зато сообщают ему одно очень важное качество.

Изолированные от внешней среды, они практически не зависят от нее. Стирлинг может работать от любого источника тепла всюду: под водой, под землей, в космосе - то есть там, где двигатели внутреннего сгорания, нуждающиеся в воздухе, работать не могут. В таких условиях без нагревателей и охладителей, передающих тепло через стенку, в принципе нельзя обойтись. И тут-то стирлинг побивают своих соперников даже по весу. У первых опытных образцов удельный вес на единицу мощности был порядка 6-7 кг на л. с., как у судовых дизелей. Современные стирлинги имеют еще меньшее соотношение - 1,5-2 кг на л. с. Они еще более компактны и легки.

Итак, схема стала двухконтурной: один контур с рабочим агентом и второй - подвод тепла; это позволило довести энергосъем до 200 л. с. на литр рабочего объема, а к.п.д. - до 38-40 процентов. Для сравнения:современ-

ные дизели имеют к.п.д. 34-38 процентов, а карбюраторные двигатели - 25-28. Кроме того, процесс сгорания топлива у стирлинга непрерывный, а это резко снижает токсичность - по выходу окиси углерода в 200 раз, по окиси азота - на 1-2 порядка. Вот где, возможно, одно из радикальных решений проблемы загрязнения атмосферы городов.

Рабочая часть современного Стирлинга представляет собой замкнутый объем, заполненный рабочим газом (рис. 2). Верхняя часть объема - горячая, она непрерывно нагревается. Нижняя - холодная, все время охлаждается водой. В том же объеме - цилиндр с двумя поршнями: вытеснителем и рабочим. Когда поршень идет вверх, газ в объеме сжимается; вниз - расширяется. Движением же вверх-вниз поршня-вытеснителя производится попеременное распределение нагретого и охлажденного газа. Когда поршень-вытеснитель находится в верхнем положении (в горячем пространстве), большая часть газа оказывается вытесненной в холодную зону. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа - рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.

Регенератор находится между холодным и горячим пространствами. Когда расширившийся горячий газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотный пучок тонких медных проволочек и отдает им содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую часть, отбирает это тепло обратно.

1 - топливная форсунка; 2 - выхлоп охлажденных газов, 3 - воздухонагреватель; 4 - выход горячих газов; 5 - горячее пространство; 6 - регенератор; 7 - цилиндр; 8 - трубки охладителя; 9 - холодное пространство; 10 - рабочий поршень; 11 - ромбический привод; 12 - камера сгорания; 13 - трубки нагревателя; 14 - поршень-вытеснитель; 15 - впуск воздуха для сжигания топлива; 16 - буферная полость.

Конечно, в реальной машине все выглядит не так просто (рис. 3). Невозможно быстро нагреть газ через толстую стенку цилиндра, для этого нужна гораздо большая поверхность нагрева. Вот почему верхняя часть замкнутого объема превращается в систему тонких трубок, нагреваемых пламенем форсунки. Чтобы как можно полнее использовать теплоту продуктов сгорания, холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами - так появляется довольно сложный контур сгорания.

Холодная часть рабочего объема - тоже система трубок, в которые нагнетается охлаждающая вода.

Под рабочим поршнем - замкнутая буферная полость, наполненная сжатым газом. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме.

По мере совершенствования неудержимо росли температура и давление. 800° по Цельсию и 250 атм. - это весьма трудная задача для конструкторов, это поиски особо прочных и термостойких материалов, сложная проблема охлаждения, так как выделение тепла по сравнению с классическими двигателями здесь в полтора-два раза больше.

Результаты этих экспериментов порой приводят к самым неожиданным находкам. К примеру, специалисты фирмы «Филипс», обкатывая свой движок на холостом ходу (без нагрева), заметили, что головка цилиндра сильно охлаждается. Совершенно случайно обнаруженный эффект повлек за собой целую серию разработок, и в итоге рождение новой холодильной машины. Сейчас такие высокопроизводительные и малогабаритные холодильные агрегаты широко используются во всем мире. Но вернемся к тепловым машинам.

Последующие события нарастают как снежный ком. В 1958 году с приобретением лицензий другими фирмами стирлинг шагнул за океан. Его стали испытывать в самых различных областях техники. Разрабатывается проект применения двигателя для питания аппаратуры космических кораблей и спутников. Для полевых радиостанций создаются энергоустановки, работающие на любом виде топлива (мощностью порядка 10 л. с.), обладающие настолько малым уровнем шума, что его не слышно за 20 шагов.

Громадную сенсацию вызвала демонстрационная установка, работающая на двадцати видах топлива. Без отключения двигателя, простым поворотом крана, в камеру сгорания поочередно подавали бензин, солярку, сырую нефть, оливковое масло, горючий газ - и машина прекрасно «съедала» любой «корм». В зарубежной печати были сообщения о проекте двигателя на 2,5 тысячи л. с. с атомным реактором. Предполагаемый к.п.д. 48-50%. Значительно уменьшаются все габариты энергоблока, что позволяет высвободившиеся вес и площадь отдать под биологическую защиту реактора.

Еще одна интересная разработка - привод для искусственного сердца весом 600 г и мощностью 13 вт. Слаборадиоактивный изотоп обеспечивает ее практически неисчерпаемым источником энергии.

Двигатель Стирлинга испытывался на некоторых автомобилях. По своим рабочим параметрам он не уступил карбюраторному, а уровень шумов и токсичность выхлопных газов значительно снизились.

Автомобиль со стирлингом может работать на любом виде.топлива, а при необходимости - на расплаве. Представьте: перед тем как въехать в город, водитель включает горелку и расплавляет несколько килограммов окиси алюминия или гидрида лития. По городским улицам он едет «не дымя»: двигатель работает от тепла, запасенного расплавом. Одна из фирм изготовила мотороллер, в бак которого заливается около 10 литров расплава фтористого лития. Такой зарядки хватает на 5 часов работы при мощности движка 3 л. с.

Работы над Стирлингами продолжаются. В 1967 году изготовлен образец опытной установки мощностью 400 л. с. на один цилиндр. Проводится комплексная программа, согласно которой к 1977 году планируется серийное производство двигателей с диапазоном мощности от 20 до 380 л. с. В 1971 году «Филипс» выпустила четырехцилиндровый промышленный двигатель в 200 л. с. с полным весом 800 кг. Уравновешенность его настолько высока, что поставленная ребром на кожух монета (размером в пятак) стоит не шелохнувшись.

К достоинствам нового типа двигателя можно отнести и большой моторесурс порядка 10 тыс. час. (есть отдельные данные о 27 тыс.), и плавность работы, так как давление в цилиндрах нарастает плавно (по синусоиде), а не взрывами, как у дизеля.

Перспективные разработки новых моделей проводятся и у нас. Ученые и инженеры трудятся над кинематикой различных вариантов, на электронно-вычислительных машинах просчитывают различные виды «сердца», стирлинга-регенератора. Идет поиск новых инженерных решений, которые лягут в основу экономичных и мощных двигателей, способных потеснить привычные дизели и бензиновые моторы, исправив тем самым несправедливую ошибку истории.

А. АЛЕКСЕЕВ

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.