Что такое дифференциал в автомобиле и как он работает. Смотреть что такое "Дифференциал" в других словарях

Дифференциал предназначен для передачи, изменения и распределения крутящего момента между двумя потребителями и обеспечения, при необходимости, их вращения с разными угловыми скоростями.

Дифференциал является одним из основных конструктивных элементов трансмиссии . Расположение дифференциала в трансмиссии автомобиля:

Дифференциалы, используемые для привода ведущих колес, называются межколесными. Межосевой дифференциал устанавливается между ведущими мостами полноприводного автомобиля.

Конструктивно дифференциал построен на основе планетарного редуктора. В зависимости от вида зубчатой передач, используемой в редукторе, различают следующие виды дифференциалов: конический, цилиндрический и червячный.

Конический дифференциал применяется в основном в качестве межколесного дифференциала. Цилиндрический дифференциал устанавливается чаще между осями полноприводных автомобилей. Червячный дифференциал, ввиду своей универсальности, может устанавливаться как между колесами, так и между осями.

Устройство дифференциала рассмотрено на примере самого распространенного конического дифференциала. Составные части дифференциала являются характерными и для других видов дифференциалов. Конический дифференциал представляет собой планетарный редуктор и включает полуосевые шестерни с сателлитами, помещенные в корпус.

Корпус (другое наименование – чашка дифференциала) воспринимает крутящий момент от главной передачи и передает его через сателлиты на полуосевые шестерни. На корпусе жестко закреплена ведомая шестерня главной передачи. Внутри корпуса установлены оси, на которых вращаются сателлиты.

Сателлиты, играющие роль планетарной шестерни, обеспечивают соединение корпуса и полуосевых шестерен. В зависимости от величины передаваемого крутящего момента в конструкции дифференциала используется два или четыре сателлита. В легковых автомобилях применяется, как правило, два сателлита.

Полуосевые шестерни (солнечные шестерни) передают крутящий момент на ведущие колеса через полуоси, с которыми имеют шлицевое соединение. Правая и левая полуосевые шестерни могут иметь равное или различное число зубьев. Шестерни с равным числом зубьев образуют симметричный дифференциал, тогда как неравное количество зубьев характерно для несимметричного дифференциала.

Симметричный дифференциал распределяет крутящий момент по осям в равных соотношениях, независимо от величины угловых скоростей ведущих колес. Благодаря этим свойствам симметричный дифференциал используется в качестве межколесного дифференциала.

Несимметричный дифференциал делит крутящий момент в определенном соотношении, поэтому устанавливается между ведущими осями автомобиля.

Работа дифференциала

В работе симметричного межколесного дифференциала можно выделить три характерных режима:

  1. прямолинейное движение;
  2. движение в повороте;
  3. движение по скользкой дороге.

При прямолинейном движении колеса встречают равное сопротивление дороги. Крутящий момент от главной передачи передается на корпус дифференциала, вместе с которым перемещаются сателлиты. Сателлиты, обегая полуосевые шестерни, передают крутящий момент на ведущие колеса в равном соотношении. Так как сателлиты на осях не вращаются, полуосевые шестерни движутся с равной угловой скоростью. При этом частота вращения каждой из шестерен равна частоте вращения ведомой шестерни главной передачи.

При движении в повороте внутреннее ведущее колесо (расположенное ближе к центру поворота) встречает большее сопротивление, чем наружное колесо. Внутренняя полуосевая шестерня замедляется и заставляет сателлиты вращаться вокруг своей оси, которые в свою очередь увеличивают частоту вращения наружной полуосевой шестерни. Движение ведущих колес с разными угловыми скоростями позволяет проходить поворот без пробуксовки. При этом, в сумме частоты вращения внутренней и наружной полуосевых шестерен всегда равна удвоенной частоте вращения ведомой шестерни главной передачи. Крутящий момент, независимо от разных угловых скоростей, распределяется на ведущие колеса в равном соотношении.

При движении по скользкой дороге одно из колес встречает большее сопротивление, тогда как другое проскальзывает - буксует. Дифференциал, в силу своей конструкции, заставляет вращаться буксующее колесо с увеличивающейся скоростью. Другое колесо при этом останавливается. Сила тяги на буксующем колесе, по причине низкой силы сцепления, мала, поэтому и крутящий момент на этом колесе тоже мал. А так как дифференциал у нас симметричный, то на другом колесе крутящий момент тоже будет небольшим. Тупиковая ситуация – автомобиль не может сдвинуться с места.

Для продолжения движения необходимо увеличить крутящий момент на свободном колесе. Это осуществляется с помощью

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

Дифференциал – это устройство, которое управляет распределением вращательного момента от входного вала к выходным, при этом скорость каждого отдельного элемента может отличаться. Механизм широко применяется в автомобильной индустрии.

Дифференциалы различаются согласно месту установки, предназначению и особенностям конструкции:

  1. В автомобилях с приводом на одну ось используется лишь один дифференциал, называемый межколесным. Его необходимость вызвана тем, что внешние и внутренние колеса проходят разное расстояние при повороте транспорта.
  2. Автомобили с приводами 6×6 или 8×8 содержат в конструкции дополнительный межтележечный дифференциал.
  3. В полноприводных же моделях устанавливается целых три дифференциала: два межколесных и один межосевой.

О том, как работает межосевой дифференциал, и какие межосевые дифференциалы вообще могут быть мы поговорим более подробно далее.

Предназначение межосевого дифференциала

Межосевой дифференциал предназначен для распределения крутящего момента между ведущими осями автомобиля и дает им возможность вращаться с разными угловыми скоростями. Такая потребность вызвана простым условием движения транспорта по неровным поверхностям, когда собственная масса конструкции давит на ось, находящуюся в более низком положении. Так, при езде под горку значительная часть момента подается на задние колеса. И, наоборот, в случае спуска.

Устройство межосевого дифференциала устанавливается, как правило, в раздаточной коробке автомобиля. Межосевой дифференциал может быть симметричным и несимметричным. Первый распределяет крутящий момент между осями поровну, а второй – в определенном соотношении.

Кроме того, существует межосевой дифференциал без механизма блокировки, который позволяет осям вращаться с различной скоростью, а также дифференциал самоблокируемый либо с механизмом ручной блокировки, который принудительно распределяет вращающий момент между приводными полуосями в зависимости от дорожных условий. При этом принудительная блокировка межосевого дифференциала подразумевает полное или частичное выключение дифференциала, обеспечивающее жесткое соединение передней и задней полуосей между собой.

Чаще всего для полной реализации полноприводных возможностей автомобиля применяется самоблокируемый дифференциал, который может иметь три вида конструкций и разные принципы работы соответственно.

Конструкции и принцип работы самоблокирующегося межосевого дифференциала

Итак, существует три вида самоблокирующегося межосевого дифференциала:

  • вязкостная муфта;
  • блокировка типа Torsen;
  • фрикционная муфта.

Межосевой дифференциал с вискомуфтой

Схема межосевого дифференциала с вискомуфтой представляет собой планетарную симметричную схему на конических шестернях. Данная конструкция предполагает наличие управляющего элемента вязкостной муфты, которая состоит из следующих элементов:

  1. корпус;
  2. вал корпуса;
  3. ведущий вал;
  4. ведомый вал;
  5. диски;
  6. боковая шестерня;
  7. уплотнения.

Муфта в своей конструкции имеет герметично закрытую полость, наполненную воздушно-силиконовой масляной смесью. Полость кинетически связана с двумя пакетами дисков, которые соединены с обеими полуосями.

Принцип работы:

При прямолинейном движении по ровной поверхности и с постоянной скоростью межосевой дифференциал передает крутящий момент двигателя на переднюю и заднюю ведущую ось в соотношении 50 на 50. В случае если один из пакетов дисков начинает вращаться быстрее другого, то в герметической полости муфты повышается давление, и она начинает механически тормозить (т.е. блокировать) этот пакет, тем самым уравнивая угловые скорости вращения.

Следующие примеры могут легко объяснить, зачем нужен межосевой дифференциал с вязкостной муфтой:

  • В случае выезда транспортного средства на скользкую поверхность, что приводит к сильной пробуксовке передних колес, из-за значительно повышается давления в муфте. Как следствие, на задние колеса подается гораздо больший крутящий момент.
  • Распределение момента в пользу переднего привода происходит в случае резкого разгона автомобиля на скользкой поверхности. В такой ситуации происходит смещение центра тяжести вперед, и передняя ось становится ведущей.

Широкое распространение конструкция с вискомуфтой получила благодаря простоте конструкции и ее дешевизне. К недочетам можно отнести отсутствие функции ручной блокировки, возможность перегрева при долговременной работе, неполное автоматическое блокирование, преобразование значительной части кинетической энергии в тепловую.

Межосевой дифференциал с блокировкой типа Torsen

Конструкция рабочего привода данной системы состоит из следующих единиц:

  1. корпус;
  2. правая полуосевая шестерня;
  3. левая полуосевая шестерня;
  4. сателлиты правой и левой полуосевых шестерен;
  5. выходные валы.

Стоит отметить, что дифференциал Torsen имеет наиболее совершенную конструкцию.

Принцип работы:

Межосевой блокируемый дифференциал Torsen состоит из ведомых и ведущих червячных колес, иначе называемых полуосевыми и саттелитами. В такой системе блокировка случается вследствие особенностей функционирования шестерен данного типа. В нормальном состоянии им задается определенное передаточное число. Если колеса имеют хорошее сцепление с поверхностью и движутся плавно, работа дифференциала происходит точно так же, как и у симметричного. Но как только происходит резкое увеличение момента, саттелит пытается начать движение в обратную сторону. Полуосевая червячная шестерня перегружается, и происходит блокировка выходных валов. При этом лишний крутящий момент двигателя переходит на другую ось. Максимальная степень перераспределения момента для дифференциалов Torsen – 75 на 25.

Наиболее известной разновидностью данной системы является Torsen Audi Quattro. Это один из самых популярных механизмов в конструкциях современных полноприводных автомобилей. Его неоспоримыми преимуществами являются широкий спектр переброса вращающего момента, мгновенная скорость срабатывания и отсутствие негативного влияния на тормозную систему. А вот к недостаткам можно отнести сложность конструкции со всеми сопутствующими последствиями.

Межосевой дифференциал с фрикционной муфтой

Блокировка на базе фрикционной муфты серьезно превосходит описанные выше конструкции, потому что имеется возможность и автоматической, и ручной блокировки дифференциала. Конструктивно она очень схожа с вискомуфтой и отличается лишь основными рабочими элементами.

  1. корпус;
  2. вал корпуса;
  3. ведущий вал;
  4. ведомый вал;
  5. фрикционные диски;
  6. уплотнения.

Принцип работы:

Принцип работы межосевого дифференциала такого рода достаточно прост. При однообразном плавном движении угловые скорости распределяются между осями поровну. Если одна из полуосей начинает вращаться с увеличенной скоростью, фрикционные диски сближаются и притормаживают ее за счет сил трения.

Однако из-за сложности конструкции и особенностей обслуживания фрикционные дифференциалы не используются производителями серийных автомобилей, несмотря на свои очевидные преимущества. Кроме того, ощутимый минус такой системы – быстрый износ рабочих элементов, а значит малый ресурс ее работы.

Система блокировки Haldex

Но стоит сказать, что на базе конструкции межосевого дифференциала с фрикционной муфтой еще в 1998 году шведским заводом Haldex была выпущена собственная альтернативная система. Она основывалась на работе электрогидравлической связки элементов. Та старая версия системы была скорей провальной, чем удачной, но породило несколько модификаций, последняя из которых стала довольно востребованной.

Haldex 4 поколения, вышедший в 2007 году стал настоящим прорывом. Основными рабочими плоскостями системы являются фрикционные диски. Через них крутящий момент от двигателя передается на полуоси. Одним из новшеств стал полный отказ производителя от использования в качестве рабочего привода гидравлического насоса. Ему на смену пришел мощный полностью электрический насос.

А вот самым интересным изменением стало превращение системы в полностью электронную. Так, включение муфты и блокировка полуосей больше не зависит от скорости вращение отдельного колеса. Управление работой системы ведется через электронный блок управления, который получает всю необходимую информацию от датчиков движения. Кроме того, одним из главных сигналов включения муфты в работу является нажатие педали газа. Ускорения почти всегда сопровождается определенной пробуксовкой, поэтому блокировка как нельзя кстати.

Haldex 4 многими называется самой современной системой для автомобилей с подключаемым полным приводом. Особенно часто Haldex устанавливают на современные внедорожники с межосевым дифференциалом азиатского производства. Ее главными преимуществами являются простота конструкции, надежность и работа на протяжении всего времени езды. А вот главный недостаток – невозможность переноса более 50% мощности на заднюю ось вращения.

Служит для распределения подводимого к нему вращающего момента между выходными валами и обеспечивает возможность их вращения с неодинаковыми угловыми скоростями.

При движении колесного ТС на повороте внутреннее колесо каждой оси проходит меньшее расстояние, чем ее наружное колесо, а колеса одной оси проходят разные пути по сравнению с колесами других осей.

Неодинаковые пути проходят колеса ТС при движении по неровностям на прямолинейных участках и на повороте, а также в случае прямолинейного движения по ровной дороге при разных радиусах качения колес, например при неодинаковом давлении воздуха в шинах и износе шин или неравномерном распределении груза на ТС.

Если бы все колеса вращались с одинаковой скоростью, это неизбежно приводило бы к их проскальзыванию и пробуксовыванию относительно опорной поверхности, следствием чего явились бы повышенный износ шин, увеличение нагрузок в механизмах трансмиссии, затраты мощности двигателя на работу скольжения и буксования, повышение расхода топлива, а также трудность поворота транспортной машины. Таким образом, колеса ТС должны иметь возможность вращаться с неодинаковыми угловыми скоростями относительно друг друга. У неведущих колес это обеспечивается тем, что они установлены свободно на своих осях и каждое из них вращается независимо друг от друга. У ведущих колес это обеспечивается установкой в их приводе дифференциалов.

Основные типы дифференциалов

По месту расположения дифференциалы подразделяют на:

  • межколесные (распределяющие вращающий момент между ведущими колесами одной оси)
  • межосевые (распределяющие момент между главными передачами двух ведущих мостов)
  • центральные (распределяющие момент между группой ведущих мостов)

По соотношению вращающих моментов на ведомых валах дифференциалы могут быть:

  • симметричными (моменты на ведомых валах всегда равны между собой)
  • несимметричные (отношение моментов на ведомых валах не равно единице)

Различают также дифференциалы:

  • неблокируемые
  • блокируемые принудительно
  • самоблокирующиеся

По конструкции дифференциалы подразделяют на:

  • конические
  • цилиндрические
  • кулачковые
  • червячные

В некоторых случаях вместо дифференциалов устанавливают механизмы типа муфт свободного хода.

В настоящее время на колесных ТС наиболее широкое распространение получили конические симметричные неблокируемые дифференциалы.

Видео: Как работает дифференциал?

Схемы дифференциалов

Рис. Схемы простых дифференциалов с постоянным соотношением моментов на ведомых валах: а — симметричного конического; б — симметричного цилиндрического; в — несимметричного цилиндрического; г — несимметричного конического; 1, 8 — левая и правая полуоси дифференциала; 2, 6 — левая и правая полуосевые шестерни; 3 — сателлит; 4 — корпус дифференциала; 5 — ведомое колесо главной передачи; 7 — ось вращения сателлитов; 9 — солнечная шестерня; 10 — эпициклическая шестерня

Рис. Межколесный симметричный конический дифференциал: 1, 8 — чашки дифференциала; 2, 7 — опорные шайбы полу осевых зубчатых колес; 3, 6 — полу осевые зубчатые колеса; 4 — опорная шайба сателлита; 5 — сателлиты; 9 — крестовина

Рис. Схемы несимметричных дифференциалов: а - конический; б - цилиндрический

Рис. Кулачковый дифференциал автомобиля ГАЗ-66-11 (а) и схема его работы (б): 1 - внутренняя звездочка; 2 - сепаратор; 3 - наружная звездочка; 4 - чашка дифференциала; 5 - сухарь

Рис. Блокируемый межколесный дифференциал: 1 - муфта; 2 - зубчатый венец

Рис. Межосевой дифференциал автомобиля КамАЗ-5320: 1 - ведущий вал; 2 - уплотнительная манжета; 3 - картер дифференциала; 4, 7 - опорные шайбы; 5, 17 - чашки дифференциала; 6 - сателлит: 8 - датчик блокировки; 9 - пробка заливного отверстия; 10 - пневматическая камера блокировки; 11 - вилка; 12 - стопорное кольцо; 13 - зубчатая муфта; 14 - муфта блокировки; 15 - сливная пробка; 16 - зубчатое колесо привода среднего моста; 18 - крестовина; 19 - зубчатое колесо привода заднего моста; 20 - болт крепления чашек; 21 - подшипник; 22 - крышка подшипника

Рис. Работа межколесного дифференциала: а - общая схема; б - при движении прямо; в - при повороте; 1 - корпус дифференциала; 2, 5 - полуосевые зубчатые колеса; 3 - крестовина: 4, 6 - сателлиты; 7 - ведущее зубчатое колесо главной передачи; 8, 9 - полуоси; 10 - ведомое зубчатое колесо главной передачи

Рис. Межосевой дифференциал Torsen: 1, 3 — правая и левая полуосевые шестерни; 2 — корпус дифференциала; 4 — сателлит, связанный с правой полуосевой шестерней; 5, 7 — выходные валы дифференциала; 6 — сателлит, связанный с левой полуосевой шестерней

Начнем с того, что означает сам этот автомобильный технический термин на доступном для обычного человека языке. Автомобильный дифференциал - это то, из чего состоит трансмиссия и то, что дает возможность колесам крутится асинхронно, то есть каждые колеса не зависят друг от друга и вращаются отдельно.

Научным языком, (от лат. differentia - разность, различие) дифференциал автомобиля - это устройство, которое разделяет входящую энергию (момент), поступаемую на входной вал между выходными валами. Простое и понятное объяснение расширяет горизонты. Интересуются работой механизмов машин еще и девушки .

Причина использования в конструкциях автомобилей

Во время поворота машины, ведущие приводные колеса вращаются с одинаковой частотой вращения и так, как одно колеса авто совершает поворот по длинной дуге, а другое по короткой, происходит пробуксовка, что плохо сказывается и сопровождается износом шин и доставляет дискомфорт водителю из-за уменьшения качества динамики автомобиля.

Назначение дифференциала

  1. дает возможность приводным (ведущим) колесам вращаться с разными угловыми скоростями
  2. служит отдельной доп.передачей в паре с главной передачей. Главная передача - это зубчатый механизм трансмиссии автомобиля, который передает крутящий момент ведущим колесам.
  3. непрерывно передает крутящий момент, исходящий от двигателя к ведущим колесам.

У переднеприводных авто главная передача и differencial расположены непосредственно в коробке переключения передач.

Если на транспортном средстве установлены более одного двигателя, на каждое колесо один двигатель, то дифференциал не требуется. Но так обычно не делают. Устанавливают 4 двигателя, по одному на каждое колесо, только на самосвалы Белаз. Двигатели эти электрические.

В устройстве гоночных картингов также дифференциал не устанавливают, так как конструкция рамы гибкая, что позволяет слегка приподнимать ведущее заднее колесо с внутренней стороны поворота не приподнимая передние колеса.

на рисунке а) - колеса вращаются с одинаковой частотой, на рисунке б) - движение колес на повороте
1 - ось сателлитов, 2 – ведомая шестерня, 3 - полуосевые шестерни, 4 - сателлит,
5 - ведущая шестерня, 6 - полуоси.

На гоночных автомобилях ралли differencial обычно заваривают сваркой, жестко блокируют и намертво связывают колеса на ведущей оси. Это применяется потому, что такие машины при езде, все повороты проходят с заносом.

Как работает дифференциал

Принцип действия. Главная передача посредством шестерни передает крутящую энергию на корпус и сателлиты, которые сцеплены с шестернями полуосей.

Когда скорость вращения колес одинакова, сателлиты сидят неподвижно (см. рисунки ниже).

При изменении угловых скоростей колес, например, при повороте или пробуксовке из-за неровностей дорог и так далее, происходит вращение сателлитов. Сателлиты служат для компенсации разницы частот вращения колес.

Рассмотрим на примере - автомобиль буксует на льду. Здесь одно колесо буксует, потому что нет сцепления со льдом, а значит и нет крутящего момента. А так как свободное блокирующее устройство распределяет тягу поровну на колеса, то раз нет крутящей силы на одном колесе, значит оно исчезает и на втором.

Выход из такой ситуации - создать противодействующую силу на противоположном колесе. А это делает блокировка. Необходимо заблокировать буксующее противоположное колесо и тогда появится противодействующая сила для противоположного колеса.

Как работает дифференциал на полноприводном автомобиле

На джипах, седанах, хэтбчеках и универсалах 4х4, если установлен свободный симметричный дифференциал, происходит следующая ситуация. Во время движения без пробуксовок на каждое колесо распределяется по 25% энергии кр.момента поровну.

Но если одно колесо буксует, например на льду, крутящая энергия снижается до нуля, так как колесо не может сцепиться с гладкой поверхностью льда. В такой ситуации, если одно колесо осталось без вращения, то и на противоположном соседнем колесе исчезает энергия вращения, потому что в данном примере установлен симметричный межосевой.

Получается одна ось осталась без вращения, поэтому и пропадает крутящий момент и на второй оси, так как differencial межосевой симметричный. Результат - на всех 4 ведущих колесах нет вращения.