Подвижный блок применение. Блоки как простые механизмы

Ось которого закреплена при подъеме грузов, не поднимается и не опускается. Представляет собой колесо с желобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для каната , цепи , ремня и т. п. Если ось блока помещается в обоймах, прикреплённых на балке или стене, такой блок называется неподвижным (то есть ось блока закреплена); если же к этим обоймам прикрепляется груз, и блок вместе с ними может двигаться, то такой блок называется подвижным.

Неподвижный блок употребляется для подъёма небольших грузов или для изменения направления силы.

Условие равновесия блока:

F = f m g {\displaystyle ~F=fmg} , где

F {\displaystyle F} - прилагаемое внешнее усилие, m {\displaystyle m} - масса груза, g {\displaystyle g} - ускорение свободного падения, f {\displaystyle f} - коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок - 1,1).

При отсутствии трения для подъема нужна сила, равная весу груза.

Подвижный блок имеет свободную ось и предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом; отсюда, если веревки параллельны (то есть когда дуга, обхватываемая веревкой, равна полуокружности), то для подъёма груза потребуется сила вдвое меньше, чем вес груза, то есть:

F = 1 2 f m g {\displaystyle ~F={1 \over {2}}fmg}

При этом груз пройдёт расстояние, вдвое меньшее пройденного точкой приложения силы F, соответственно, выигрыш в силе подвижного блока равен 2.

Фактически, любой блок представляет собой рычаг , в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: Во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии . Иными словами, работа , совершаемая при перемещении груза на какое-либо расстояние без использования блока, равна работе, затрачиваемой при перемещении груза на то же самое расстояние с применением блока при условии отсутствия трения. В реальном блоке всегда присутствуют некоторые потери.

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст . Простейшая такая система изображена на рисунке и даёт выигрыш в силе в 2 раза.

В отличие от шкива , блок вращается на оси свободно и обеспечивает исключительно изменение направления движения ремня или каната, не передавая усилия с оси на ремень или с ремня на ось.

Описание устройства

Блок - простой механизм, представляющий собой колесо с желобом по окружности для каната или цепи, способное свободно вращаться вокруг своей оси. Тем не менее, верёвка, переброшенная через древесную ветку тоже в какой-то степени является блоком.

Зачем же нужны блоки?

В зависимости от своей конструкции блоки могут позволить изменять направление приложенной силы (например, для того, чтобы поднять некий груз, подвешенный на верёвке, переброшенной через древесную ветку, необходимо тянуть другой конец верёвки вниз... или в сторону). При этом, данный блок не даст выигрыша в силе. Такие блоки называются неподвижными , так как ось вращения блока жёстко закреплена (конечно, если ветка не сломается). Такие блоки применяются для удобства. Например, при поднятии груза на высоту гораздо легче тянуть веревку с грузом перекинутую через блок вниз , прикладывая к ней вес своего тела, чем стоять наверху и подтягивать к себе груз с веревкой.

Кроме этого, существуют блоки, которые позволяют не только изменять направление приложенной силы, но и дают выигрыш в силе. Такой блок называется подвижным и он работает с точностью до наоборот нежели подвижный блок.

Для того, чтобы получить выигрыш в силе необходимо жёстко закрепить один конец верёвки (например привязать её к ветке). Далее на верёвку устанавливается колесо с желобом к которому и подвешивается груз (это необходимо сделать таким образом, чтобы колесо с грузом могло свободно ездить по нашей верёвке). Теперь, потянув за свободный конец верёвки вверх, мы увидим, что блок с грузом также начали подниматься.

Усилия, которые нам необходимо будет затратить для подъёма груза таким образом будут примерно в 2 раза меньше нежели вес груза вместе с блоком. К сожалений данный вид блока не позволяет изменять направление силы в широких пределах, поэтому его часто используют в паре с неподвижным (жёстко закреплённым) блоком.

Описание опыта

Вначале на видео происходит демонстрация принципа работы неподвижного блока: к жёстко закреплённому блоку подвешиваются грузы одинаковой массы, при этом блок находится в равновесии. Но стоит лишь подвесить один лишний грузик, как сразу же начинается перевес в большую сторону.

Далее, используя систему из подвижного и неподвижного блоков, мы пытаемся добиться состояния равновесия, подбирая оптимальное количество грузиков, подвешенных с обеих сторон. В итоге блок уравновешивается,когда количество грузиков, подвешенных к подвижному блоку, становиться в два раза больше, чем грузиков, подвешенных к свободному концу нити.

Таким образом можно сделать вывод, что подвижный блок даёт двукратный выигрыш в силе .

Это интересно

А вы знаете, что подвижные и неподвижные блоки широко используются в передаточных механизмах автомобилей? Кроме этого, блоки используются строителями для подъёма больших и малых грузов (ну или самих себя. Например, при ремонте внешних фасадов зданий, строители часто работают в люльке, которая может перемещаться между этажами. По завершении работы на этаже, рабочие достаточно быстро могут передвинуть люльку на этаж выше, используя при этом лишь собственную силу). Блоки получили такое широкое распространение из-за простоты их сборки и удобства работы с ними.

Библиографическое описание: Шумейко А. В., Веташенко О. Г. Современный взгляд на простой механизм «блок», изучаемый по учебникам физики для 7 класса // Юный ученый. — 2016. — №2. — С. 106-113..07.2019).



Учебники физики для 7 класса при изучении простого механизма блок по-разному трактуют получение выигрыша в силе при подъёме груза с помощью этого механизма, например: в учебнике Пёрышкина А. В. выигрыш в силе достигается с помощью колеса блока, на который действуют силы рычага, а в учебнике Генденштейна Л. Э. тот же выигрыш получают с помощью троса, на который действует сила натяжения троса. Разные учебники, разные предметы и разные силы - для получения выигрыша в силе, при подъёме груза. Поэтому целью данной статьи служит поиск предметов и сил, с помощью которых получается выигрыш в силе, при подъёме груза простым механизмом блок.

Ключевые слова:

Сначала ознакомимся и сравним как получают выигрыш в силе, при подъёме груза простым механизмом блок, в учебниках физики для 7 класса, для этого выдержки из текстов учебников, с одинаковыми понятиями, для наглядности разместим в таблице.

Пёрышкин А. В. Физика. 7 класс.

§ 61. Применение правила равновесия рычага к блоку, стр.180–183.

Генденштейн Л. Э. Физика. 7 класс.

§ 24. Простые механизмы, стр.188–196.

«Блок представляет собой колесо с жёлобом, укреплённое в обойме. По жёлобу блока пропускают верёвку, трос или цепь.

«Неподвижным блоком называют такой блок ось которого закреплена и при подъёме грузов не поднимается и не опускается (рис.177).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис.178): ОА=ОВ=r.

Такой блок не даёт выигрыша в силе

(F1 = F2), но позволяет изменять направление действия силы» .

«Даёт ли неподвижный блок выигрыш в силе? …на рис.24.1а трос натянут силой, приложенной рыбаком к свободному концу троса. Сила натяжения троса остаётся постоянной вдоль троса, поэтому со стороны троса на груз (рыбу) действует такая же по модулю сила. Следовательно, неподвижный блок не даёт выигрыша в силе.

6.Как с помощью неподвижного блока получить выигрыш в силе? Если человек поднимает самого себя, как показано на рис.24.6, то при этом вес человека распределяется поровну на две части троса (по разные стороны блока). Поэтому человек поднимает себя прикладывая силу, которая вдвое меньше его веса», .

«Подвижный блок - это блок, ось которого поднимается и опускается вместе с грузом (рис.179).

На рисунке 180 показан соответствующий ему рычаг: О - точка опоры рычага,

АО - плечо силы Р и ОВ - плечо силы F.

Так как плечо ОВ в 2 раза больше плеча ОА,

то сила F в 2 раза меньше силы Р: F=Р/2.

Таким образом, подвижный блок даёт выигрыш в силе в 2 раза» .

«5. Почему подвижный блок даёт выигрыш в силе в два раза?

При равномерном подъёме груза подвижный блок тоже движется равномерно. Значит равнодействующая всех приложенных к нему сил равна нулю. Если массой блока и трением в нём можно пренебречь, то можно считать, что к блоку приложены три силы: вес груза Р, направленный вниз, и две одинаковые силы натяжения троса F, направленные вверх. Поскольку равнодействующая этих сил равна нулю, то Р=2F, то есть вес груза в 2 раза больше силы натяжения троса. Но сила натяжения троса - это как раз и есть сила, которую прикладывают поднимая груз с помощью подвижного блока. Таким образом мы доказали, что подвижный блок даёт выигрыш в силе в 2 раза» .

«Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.181).

Неподвижный блок применяется только для удобства. Он не даёт выигрыша в силе, но изменяет направление действия силы, например позволяет поднимать груз, стоя на земле.

Рис.181. Комбинация подвижных и неподвижных блоков - полиспаст» .

«12.На рис 24.7 изображена система

блоков. Сколько в ней подвижных блоков и сколько неподвижных?

Какой выигрыш в силе даёт такая система блоков, если трением и

массой блоков можно пренебречь?» .

Рис.24.7. Ответ на стр.240: «12.Три подвижных блока и один неподвижный; в 8 раз» .

Подведём итог ознакомления и сравнения текстов и рисунков в учебниках:

Доказательства получения выигрыша в силе в учебнике Пёрышкина А. В. проводятся на колесе блока и действующая сила - сила рычага; при подъёме груза неподвижный блок не даёт выигрыша в силе, а подвижный блок даёт выигрыш в силе в 2 раза. О тросе, на котором висит груз на неподвижном блоке и подвижный блок с грузом, нет упоминания.

С другой стороны, в учебнике Генденштейна Л. Э. доказательства выигрыша в силе проводятся на тросу, на котором висит груз или подвижный блок с грузом и действующая сила - сила натяжения троса; при подъёме груза неподвижный блок может давать выигрыш в силе в 2 раза, а о рычаге, на колесе блока, в тексте нет упоминания.

Поиск литературы с описанием получения выигрыша в силе блоком и тросом привели к «Элементарному учебнику физики» под редакцией академика Г. С. Ландсберга, в §84. Простые машины на стр.168–175 даны описания: «простого блока, двойного блока, ворота, полиспаста и дифференциального блока». Действительно, по своей конструкции, «двойной блок даёт выигрыш в силе, при подъёме груза, за счёт разницы в длине радиусов блоков», с помощью которых происходит подъём груза, а «полиспаст - даёт выигрыш в силе, при подъёме груза, за счет верёвки, на нескольких частях которой, висит груз» . Таким образом удалось узнать почему дают выигрыш в силе, при подъёме груза, по отдельности блок и трос (верёвка), но не удалось узнать, как блок и трос взаимодействуют между собой и передают вес груза друг другу, так как груз может быть подвешен на тросу, а трос перекинут через блок или груз может висеть на блоке, а блок висит на тросу. Выяснилось, что сила натяжения троса постоянна и действует по всей длине троса, поэтому передача веса груза тросом блоку будет в каждой точке соприкосновения троса и блока, а также передача веса груза подвешенного на блоке - тросу. Для уточнения взаимодействия блока с тросом проведём опыты по получению выигрыша в силе подвижным блоком, при подъёме груза, с использованием оборудования школьного кабинета физики: динамометры, лабораторные блоки и набор грузов в 1Н (102 г). Опыты начнём с подвижного блока, потому что имеем три разные версии получения выигрыша в силе этим блоком. Первая версия - это «Рис.180. Подвижный блок как рычаг с неравными плечами» - учебник Пёрышкина А. В., вторая «Рис.24.5... две одинаковые силы натяжения троса F», - по учебнику Генденштейна Л. Э. и наконец третья «Рис.145.Полиспаст». Подъём груза подвижной обоймой полиспаста на нескольких частях одной верёвки - согласно учебника Ландсберга Г. С.

Опыт №1. «Рис.183»

Для проведения опыта № 1, получение выигрыша в силе на подвижном блоке «рычагом с неравными плечами ОАВ рис.180» по учебнику Пёрышкина А. В., на подвижном блоке «рис.183» положение 1, нарисуем рычаг с неравными плечами ОАВ, как на «рис.180», и начнём подъём груза из положения 1 в положение 2. В это же мгновение блок начинает вращение, против часовой стрелки, вокруг своей оси в точке А, а точка В - конец рычага, за который происходит подъём, выходит за пределы полуокружности, по которой трос снизу огибает подвижный блок. Точка О - точка опоры рычага, которая должна быть неподвижной, уходит вниз см. «рис.183» - положение 2, т. е. рычаг с неравными плечами ОАВ изменяется как рычаг с равными плечами (одинаковые пути проходят точки О и В).

На основе полученных данных в опыте № 1 об изменений положения рычага ОАВ на подвижном блоке при подъёме груза из положения 1 в положение 2, можно сделать вывод о том, что представление подвижного блока как рычага с неравными плечами на «рис.180», при подъёме груза, с вращением блока вокруг своей оси, соответствует рычагу с равными плечами, который не даёт выигрыша в силе, при подъёме груза .

Опыт № 2 начнём с крепления динамометров на концы троса, на который повесим подвижный блок с грузом весом 102 г, что соответствует силе тяжести 1 Н. Один из концов троса закрепим на подвесе, а за второй конец троса будем производить подъём груза на подвижном блоке. Перед подъёмом показания обоих динамометров по 0,5 Н, вначале подъёма показания динамометра, за который происходит подъём, изменилось до 0,6 Н, и оставалось таким во время подъёма, по окончании подъёма показания вернулись к 0,5 Н. Показания динамометра, закреплённого за неподвижный подвес не менялось во время подъёма и оставалось равным 0,5 Н. Проведём анализ результатов опыта:

  1. Перед подъёмом, когда груз в 1 Н (102 г) висит на подвижном блоке, вес груза распределяется на всё колесо и передаётся тросу, который снизу огибает блок, всей полуокружностью колеса.
  2. Перед подъёмом показания обоих динамометров по 0,5 Н, что свидетельствует о распределении веса груза в 1 Н (102 г) на две части троса (до и после блока) или о том, что сила натяжения троса равна 0,5 Н, и одинакова по всей длине троса (какая в начале, такая же и в конце троса) - оба эти утверждения верны.

Проведём сравнение анализа опыта № 2 с версиями учебников о получении выигрыша в силе в 2 раза подвижным блоком. Начнём с утверждения в учебнике Генденштейна Л. Э. «... что к блоку приложены три силы: вес груза Р, направленный вниз, и две одинаковые силы натяжения троса, направленные вверх (рис.24.5)». Точнее будет утверждение, что вес груза на «рис. 14.5» распределился на две части троса, до и после блока, так как сила натяжения троса - одна . Осталось проанализировать подпись под «рис.181» из учебника Пёрышкина А. В. «Комбинация подвижных и неподвижных блоков - полиспаст». Описание устройства и получения выигрыша в силе, при подъёме груза, полиспастом дано в Элементарном учебнике физики под ред. Лансберга Г. С. где сказано: «Каждый кусок верёвки между блоками будет действовать на движущийся груз с силой Т, а все куски верёвки будут действовать с силой nT, где n - число отдельных участков верёвки, соединяющих обе части блока». Получается, что если к «рис.181» применить получение выигрыша в силе «верёвкой, соединяющей обе части» полиспаста из Элементарного учебника физики Ландсберга Г. С., то описание получение выигрыша в силе подвижным блоком на «рис.179 и соответственно рис.180» будет ошибкой .

Проанализировав четыре учебника физики можно сделать вывод, что существующее описание получения выигрыша в силе простым механизмом блок не отвечает реальному положению дела и поэтому требует нового описания работы простого механизма блок.

Простой грузоподъёмный механизм состоит из блока и троса (верёвки или цепи).

Блоки этого грузоподъёмного механизма подразделяются:

по конструкции на простые и сложные;

по способу подъёма груза на подвижные и неподвижные.

Знакомство с конструкцией блоков начнём с простого блока , который представляет собой колесо, вращающееся вокруг своей оси, с жёлобом по окружности для троса (верёвки, цепи) рис.1 и его можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса: ОА=ОВ=r. Такой блок не даёт выигрыша в силе, но позволяет изменять направление движение троса (верёвки, цепи).

Двойной блок состоит из двух блоков разных радиусов, жестко скреплённых между собой и насаженных на общую ось рис.2. Радиусы блоков r1 и r2 различны и при подъёме груза действуют как рычаг с неравными плечами, а выигрыш в силе будет равен отношению длин радиусов блока большего диаметра к блоку меньшего диаметра F =Р·r1/r2.

Ворот состоит из цилиндра (барабана) и прикреплённой к нему рукоятки, которая выполняет роль блока большого диаметра, Выигрыш в силе, даваемый воротом, определяется отношением радиуса окружности R, описываемой рукояткой, к радиусу цилиндра r, на который намотана верёвка F = Р·r/R.

Перейдём к способу подъёма груза блоками. Из описания конструкции все блока имеют ось, вокруг которой они вращаются. Если ось блока закреплена и при подъёме грузов не поднимается и не опускается, то такой блок называется неподвижным блоком, простой блок, двойной блок, ворот.

У подвижного блока ось поднимается и опускается вместе с грузом рис.10 и он предназначен в основном для устранения перегиба троса в месте подвеса груза.

Ознакомимся к устройством и способом подъёма груза второй частью простого грузоподъёмного механизма - это трос, верёвка или цепь. Трос свит из стальных проволочек, верёвка свита из нитей или прядей, а цепь состоит из звеньев, соединённых между собой.

Способы подвеса груза и получение выигрыша в силе, при подъёме груза, тросом:

На рис. 4 груз закреплён на одном конце троса и если поднимать груз за другой конец троса, то для подъёма этого груза потребуется сила чуть больше веса груза, так как простой блок выигрыша в силе не даёт F = Р.

На рис.5 груз рабочий поднимает самого себя за трос, который сверху огибает простой блок, на одном конце первой части троса закреплено сидение, на котором сидит рабочий, а за вторую часть троса рабочий поднимает самого себя с силой в 2 раза меньшей своего веса, потому что вес рабочего распределился на две части троса, первая - от сидения до блока, а вторая - от блока до рук рабочего F = Р/2.

На рис.6 груз поднимают двое рабочих за два троса и вес груза распределятся поровну между тросами и поэтому каждый рабочий будет поднимать груз с силой половины веса груза F = Р/2.

На рис.7 рабочие поднимают груз, который висит на двух частях одного троса и вес груза распределятся поровну между частями этого троса (как между двумя тросами) и каждый рабочий будет поднимать груз с силой равной половине веса груза F = Р/2.

На рис.8 конец троса, за который поднимал груз один из рабочих, закрепили на неподвижном подвесе, а вес груза распределился на две части троса и при подъёме груза рабочим за второй конец троса, сила, с которой рабочий будет поднимать груз, в два раза меньше веса груза F = Р/2 и подъём груза будет в 2 раза медленнее.

На рис.9 груз висит на 3 частях одного троса, один конец которого закреплён и выигрыш в силе, при подъёме груза, будет равен 3, так как вес груза распределится на три части троса F = Р/3.

Для устранения перегиба и уменьшения силы трения в месте подвеса груза устанавливается простой блок и сила необходимая для подъёма груза не изменилась, так как простой блок не даёт выигрыша в силе рис.10 и рис.11, а сам блок будет называться подвижным блоком , так как ось этого блока поднимается и опускается вместе с грузом.

Теоретически груз можно подвесить на неограниченное число частей одного троса, но практически ограничиваются шестью частями и такой грузоподъёмный механизм называется полиспаст , который состоит из неподвижной и подвижной обойм с простыми блоками, которые поочерёдно огибаются тросом, одним концом закреплённый на неподвижной обойме, а подъём груза производят за второй конец троса. Выигрыш в силе зависит от количества частей троса между неподвижной и подвижной обоймами, как правило это 6 частей троса и выигрыш в силе 6 раз.

В статье рассмотрены реально существующие взаимодействия между блоками и тросом при подъёме груза. Существующая практика в определении что «неподвижный блок не даёт выигрыша в силе, а подвижный блок даёт выигрыш в силе в 2 раза» ошибочно трактовала взаимодействие троса и блока в подъёмном механизме и не отражала всего многообразия конструкции блоков, что вело к развитию односторонних ошибочных представлений о блоке. По сравнению с существующими объёмами материала для изучения простого механизма блок, объём статьи увеличился в 2 раза, но это позволило наглядно и доходчиво объяснить процессы, протекающие в простом грузоподъёмном механизме не только ученикам, но и учителям.

Литература:

  1. Пёрышкин, А. В. Физика, 7 кл.: учебник/ А. В. Пёрышкин.- 3-е изд., доп.- М.: Дрофа, 2014, - 224 c,: ил. ISBN 978–5-358–14436–1. § 61. Применение правила равновесия рычага к блоку, стр.181–183.
  2. Генденштейн, Л. Э. Физика. 7 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений/ Л. Э. Генденштен, А. Б. Кайдалов, В. Б. Кожевников; под ред. В. А. Орлова, И, И. Ройзена.- 2-е изд., испр. - М.: Мнемозина, 2010.-254 с.: ил. ISBN 978–5-346–01453–9. § 24. Простые механизмы, стр.188–196.
  3. Элементарный учебник физики, под редакцией академика Г. С. Ландсберга Том 1. Механика. Теплота. Молекулярная физика.- 10 изд.- М.: Наука, 1985. § 84. Простые машины, стр. 168–175.
  4. Громов, С. В. Физика: Учеб. для 7 кл. общеобразоват. учреждений/ С. В. Громов, Н. А. Родина.- 3-е изд. - М.: Просвещение, 2001.-158 с,:ил. ISBN-5–09–010349–6. §22. Блок, стр.55 -57.

Ключевые слова: блок, двойной блок, неподвижный блок, подвижный блок, полиспаст. .

Аннотация: Учебники физики для 7 класса при изучении простого механизма блок по-разному трактуют получение выигрыша в силе при подъёме груза с помощью этого механизма, например: в учебнике Пёрышкина А. В. выигрыш в силе достигается с помощью колеса блока, на который действуют силы рычага, а в учебнике Генденштейна Л. Э. тот же выигрыш получают с помощью троса, на который действует сила натяжения троса. Разные учебники, разные предметы и разные силы - для получения выигрыша в силе, при подъёме груза. Поэтому целью данной статьи служит поиск предметов и сил, с помощью которых получается выигрыш в силе, при подъёме груза простым механизмом блок.

Под термином "блок" понимается некоторое механическое устройство, представляющее из себя ролик, который закреплен на перпендикулярной оси. Этот ролик или может свободно перемещаться, или напротив – закреплен жестко. Упростим определение - если ось вращения ролика перемещается в пространстве, то блок подвижный. На ролике есть желобок, в который вставляется веревка или трос. Картинка ниже демонстрирует внешний вид блока.

Если ролик закреплен, например, на потолке - это неподвижный блок. Если ролик перемещается вместе с грузом – это подвижный блок. В общем смысле разница только в этом.

Смысл использования подвижного блока – выигрыш в силе при подъеме или перемещении грузов и физических тел. Неподвижный же блок выигрыша не даёт, однако часто сильно упрощает перемещение тела и используется в системах совместно с подвижным блоком.

Применение подвижного и неподвижного блоков

Система блоков встречается повсеместно. Это и подъемные краны, и различные устройства для перемещения грузов в гараже, и даже приводные ремни в современном автомобиле. Часто блок используется даже без четкого понимания того, что это тот самый механизм.

Наверняка на строительных площадках вам встречались подвижные колесики, закрепленные на верхних этажах строящегося дома. Через такое колесо перекинута веревка или цепь и рабочий, закрепляя ведро на первом этаже, поднимает его на верхний этаж, перемещая веревку. Это простой пример использования неподвижного блока. Если же к ведру добавить ещё одно колесико, то получится система блоков - подвижный и неподвижный.

Ещё один более редкий пример использования неподвижного блока. Когда человек вытаскивает из грязи автомобиль, обернув буксировочный трос вокруг ствола дерева. Делается это для большего удобства, поскольку буксировочная лебедка легко зацепится за небольшой конец троса, обернутого вокруг ствола. От самого такого блока выигрыша нет, да и поскольку дерево не вращается вокург своей оси, сила сопротивления увеличивает нагрузку.

Примеров использования этих простых механизмов вокруг нас очень много.

Самое известное устройство, которое работает на принципе блоков - это полиспаст. Оно активно применяется в подъемных механизмах. Система блоков уменьшает силу и общая работа сокращается в 4-8 раз.

Решение задач с подвижным и неподвижным блоками

В задачах по физике часто необходимо определить, какой суммарный выигрыш в силе будет получен при использовании блоков. Ученику предлагается сложная схема, где соединены подряд несколько блоков разного типа.

Ключ к решению подобных задач лежит в умении разобраться во взаимодействии этих устройств. Каждый блок рассчитывается отдельно, а затем добавляется в общую формулу. Расчётная формула для всей задачи составляется согласно схеме, которую нарисовал ученик, читая условие.

Для лучшего понимания подобных задач следует помнить, что блок – это своеобразный рычаг . Выигранная сила даёт потерю в расстоянии (в случае подвижного блока).

Расчётная формула очень простая.

Для неподвижного блока F=fmg, где F – это сила, f – коэффициент сопротивления блока, m – масса груза, g – гравитационная постоянная. Иными словами, F – это та сила, которую нужно приложить, чтобы поднять, например, ящик с земли с использованием неподвижного блока. Как видите, зависимость прямая и коэффициента нет.

Для подвижного блока мы имеем двукратный выигрыш в силе. Расчётная формулаF=0,5fmg, где буквенные обозначения аналогичны формуле чуть выше. Соответственно, при использовании подвижного блока, такой ящик с массой m будет поднять в два раза легче с блоком, чем с использованием одной лишь только собственной спины.

Обратите внимание, что коэффициент сопротивления – это то противодействие, которое возникает в блоке при перемещении по нему веревки. Обычно эти величины заданы в условии задачи или являются табличной величиной. Иногда в школьных задачах эти коэффициенты вовсе опускаются и не учитываются.

Кроме того, не нужно забывать, что если сила прилагается под углом, то нужно использовать стандартную методику расчёта треугольника сил . Если в задаче сказано, что человек тянет груз за веревку, которая находится под 30 градусами к линии горизонта, то это безусловно должно быть учтено и обозначено на расчётной схеме.

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм - это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы - это рычаг и наклонная плоскость.

Рычаг.

Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7: 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок - укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела - это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где - радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок , ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы "перекатывается" через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) - не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость - это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: "наклонная плоскость с углом ".

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).


Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2: 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу A полн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

=A полезн/А полн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .


Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

. (1)

Проектируем на ось Y:

. (2)

Кроме того,

, (3)

Из (2) имеем:

Тогда из (3) :

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

A полн=.

Полезная работа, очевидно, равна:

А полезн=.

Для искомого КПД получаем.