Как рассчитать модель автомобиля для аэродинамической трубы. Как это работает: Модели для аэродинамической трубы

Действующий регламент разрешает командам тестирование в аэродинамической трубе моделей машин, не превышающих 60% масштаба. В интервью F1Racing бывший технический директор команды Renault Пэт Симондс рассказал об особенностях этой работы…

Пэт Симондс: «Сегодня все команды работают с моделями 50% или 60% масштаба, но так было не всегда. Первые аэродинамические тесты в 80-х проводились с макетами в 25% от реальной величины – большего не позволяли мощности аэродинамических труб в Университете Саутгемптона и Имперского Колледжа в Лондоне – только там была возможность установить модели на подвижную основу. Потом появились аэродинамические трубы, в которых можно было работать с моделями в 33% и 50%, а сейчас, из-за необходимости ограничения расходов, команды условились тестировать модели не более 60% при скорости воздушного потока не больше 50 метров в секунду.

При выборе масштаба модели команды исходят из возможностей имеющейся аэродинамической трубы. Для получения точных результатов габариты модели не должны превышать 5% части рабочей области трубы. Производство моделей меньшего масштаба стоит дешевле, но чем меньше модель, тем сложнее соблюсти необходимую точность. Как и во многих других вопросах разработки машин Формулы 1, здесь нужно искать оптимальный компромисс.

В прежние времена модели изготавливались из древесины произрастающего в Малайзии дерева Диера, имеющего малую плотность, сейчас используется оборудование для лазерной стереолитографии – луч инфракрасного лазера полимеризует композиционный материал, получая на выходе деталь с заданными характеристиками. Этот метод позволяет уже через несколько часов проверить эффективность новой инженерной идеи в аэродинамической трубе.

Чем точнее выполнена модель, тем более достоверна информация, полученная при её продувке. Здесь важна каждая мелочь, даже через выхлопные трубы поток газов должен проходить с той же скоростью, как и на реальной машине. Команды пытаются добиться предельно возможной для имеющегося оборудования точности при моделировании.

Многие годы вместо шин использовались их масштабные копии из нейлона или углепластика, серьёзного прогресса удалось добиться, когда компания Michelin изготовила точные уменьшенные копии своих гоночных шин. Модель машины оснащается множеством датчиков для измерения давления воздуха и системой, позволяющей менять баланс.

Модели, включая установленное на них измерительное оборудование, немногим уступают в стоимости реальным машинам – к примеру, они стоят дороже, чем реальные машины GP2. Это на самом деле ультрасложное решение. Базовый каркас с датчиками стоит около 800 тысяч долларов, он может использоваться несколько лет, но обычно команды имеют два комплекта, чтобы не останавливать работу.

Каждая доработка кузовных элементов или подвески приводит к необходимости изготовления новой версии обвеса, что обходится ещё в четверть миллиона. При этом работа самой аэродинамической трубы обходится примерно в тысячу долларов в час и требует присутствия 90 сотрудников. Серьёзные команды тратят на эти исследования около 18 миллионов долларов за сезон.

Затраты окупаются. Увеличение прижимной силы на 1% позволяет отыграть одну десятую секунды на реальной трассе. В условиях стабильного регламента инженеры примерно столько и отыгрывают в месяц, так что только в отделе моделирования каждая десятая обходится команде в полтора миллиона долларов».

Программный комплекс вычислительной аэро- и гидродинамики FlowVision предназначен для проведения виртуальных аэродинамических продувок различных технических или природных объектов. В качестве объектов могут выступать транспортные изделия, объекты энергетики, военно-промышленные изделия и прочие. FlowVision позволяет моделировать обтекание при различных скоростях набегающего потока и при различной степени его возмущенности (степени турбулентности).

Процесс моделирования осуществляется строго в трехмерной пространственной постановке задачи и происходит по принципу «как есть», что подразумевает возможность исследования полноценной геометрической модели объекта пользователя без каких-либо упрощений. Созданная система обработки импортируемой трехмерной геометрии позволяет безболезненно работать с моделями любой степени сложности, где пользователь, фактически, сам выбирает степень детализации своего объекта - хочет ли он продувать упрощенную сглаженную модель внешних обводов или же полноценную модель с наличием всех конструктивных элементов, вплоть до головок болтов на дисках колес и логотипа производителя в виде фигурки на носу автомобиля.


Распределение скорости в окрестности корпуса гоночного автомобиля.

Учтены все детали – спицы колес, влияние несимметричности спиц руля на картину обтекания.

FlowVision создан российской командой разработчиков (компания ТЕСИС, Россия) более 10 лет назад и базируется на разработках отечественной фундаментальной и математической школы. Система создана в расчете на то, что с ней будут работать пользователи самой разной квалификации – студенты, преподаватели, конструктора и ученые. Можно одинаково эффективно решать как простые, так и сложные задачи.


Продукт применяется в различных отраслях промышленности, науки и образования – авиация, космонавтика, энергетика, судостроение, автомобилестроение, экология, машиностроение, переработка и химическая промышленность, медицина, атомная промышленность и оборонный сектор и имеет самую большую инсталляционную базу в России.

В 2001 году, решением Главного Совета Министерства Российской Федерации, FlowVision был рекомендован для включения в программу преподавания механики жидкости и газа в ВУЗах России. В настоящее время FlowVision используется как составляющая часть учебного процесса ведущих ВУЗов России – МФТИ, МЭИ, СПбГТУ, Владимирский университет, ННГУ и другие.

В 2005 году FlowVision прошел испытания и получил сертификат соответствия Госстандарта Российской Федерации.

Основные возможности

В основе FlowVision лежит принцип закона сохранения массы – количество вещества, поступающее в заполненный замкнутый расчетный объем, равно количеству вещества из него убывающего (см. Рис.1).

Рис. 1 Принцип закона сохранения массы


Решение для такой задачи происходит с помощью нахождения среднего значения величины в заданном объеме на основе данных на границах (теорема Остроградского-Гаусса).

Рис. 2 Интегрирование по объему на основе граничных значений


Для получения более точного решения исходный расчетный объем разбивается на более малые объемы.



Рис. 3 Сгущение расчетной сетки


Процедура разбиение исходного объема на более мелкие объемы называется ПОСТРОЕНИЕМ РАСЧЕТНОЙ СЕТКИ , а массив получившихся объемов – РАСЧЕТНОЙ СЕТКОЙ . Каждый получившийся в процессе построения расчетной сетки объем называется РАСЧЕТНОЙ ЯЧЕЙКОЙ , в каждой из которых так же соблюдается баланс пришедшей и ушедшей массы. Замкнутый объем, в котором происходит построение расчетной сетки, называется РАСЧЕТНОЙ ОБЛАСТЬЮ .

Архитектура

Идеология FlowVision построена на базе распределенной архитектуры, где программный блок, выполняющий арифметические вычисления, может находиться на любом компьютере в составе сети – на высокопроизводительном кластере или ноутбуке. Архитектура программного комплекса является модульной, что позволяет безболезненно вносить в него улучшения и новые функциональные возможности. Основными модулями являются ПреПостПроцессор и блок решателя, а также несколько вспомогательных блоков, выполняющих различные операции, предназначенные для мониторинга и настройки.

Распределение давления по корпусу спортивного автомобиля

В функциональное назначение Препроцессора входит импортирование геометрии расчетной области из систем геометрического моделирования, задание модели среды, расстановка начальных и граничных условий, редактирование или импорт расчетной сетки и задание критериев сходимости, после чего управление передается Решателю, который начинает процесс построения расчетной сетки и осуществляет расчет по заданным параметрам. В процессе счета пользователь имеет возможность вести инструментами Постпроцессора визуальный и количественный мониторинг расчета и оценивать процесс развития решения. При достижении требуемого значения критерия сходимости процесс счета может быть остановлен, после чего результат становится полностью доступен для пользователя, который с помощью инструментов Постпроцессора может осуществить обработку данных - визуализация результатов и количественная оценка с последующим сохранением во внешние форматы данных.

Расчетная сетка

В FlowVision используется прямоугольная расчетная сетка, которая автоматически адаптируется к границам расчетной области и решению. Аппроксимация криволинейных границ с высокой степенью точности обеспечивается использованием метода подсеточного разрешения геометрии. Данный подход позволяет работать с геометрическими моделями, состоящими из поверхностей любой степени сложности.

Исходная расчетная область


Ортогональная сетка, накладываемая на область

Обрезка начальной сетки границами области

Итоговая расчетная сетка


Автоматическое построение расчетной сетки с учетом кривизны поверхности


При необходимости уточнить решение на границе или в нужном месте расчетного объема можно провести динамическую адаптацию расчетной сетки. Адаптация – это дробление ячеек низшего уровня на более мелкие ячейки. Адаптация может быть по граничному условию, по объему и по решению. Адаптация сетки производится на указанной границе, в указанном месте расчетной области или по решению с учетом изменения переменной и градиента. Адаптация производится как в сторону измельчения сетки, так и в обратную сторону – сливание мелких ячеек в более крупные, вплоть до сетки начального уровня.



Технология адаптации расчетной сетки

Подвижные тела

Технология подвижного тела позволяет поместить внутри расчетной области тело произвольной геометрической формы и придать ему поступательное и/или вращательное движение. Закон движения может быть постоянным или переменным во времени и пространстве. Движение тела задается тремя основными способами:

Явным образом через задание скорости тела;
- через задание силы, действующей на тело и сдвигающей его с начальной точки

Через воздействие от среды, в которую тело помещено.

Все три способа можно комбинировать друг с другом.

Сброс ракеты в нестационарном потоке под действием силы тяжести

Воспроизведение опыта Маха: движение шара со скоростью 800 м/с

Параллельные вычисления

Одной из ключевых особенностей программного комплекса FlowVision технологии параллельных вычислений, когда для решения одной задачи используется несколько процессоров или процессорных ядер, что позволяет ускорить расчет пропорционально их количеству.


Ускорение расчета задачи, в зависимости от количества привлекаемых ядер

Процедура запуска в параллельном режиме полностью автоматизирована. Пользователю лишь необходимо указать количество ядер или процессоров, на которых будет запускаться задача. Все дальнейшие действия по разбиению расчетной области на части и обмену данными между ними алгоритм проведет самостоятельно, выбирая наилучшие параметры.


Декомпозиция приповерхностных ячеек на 16 процессоров для задач о двух автомобилях

Команда FlowVision поддерживает тесные связи с представителями отечественного и зарубежного HPC (High Perfomance Computing) сообщества и участвует в совместных проектах, нацеленных на достижение новых возможностей в области повышения производительности в режиме параллельных вычислений.

В 2007 году FlowVision совместно с НИВЦ МГУ стал участником федеральной программы по созданию национальной терафлопной параллельной расчетной системы. В рамках программы команда разработчиков адаптирует FlowVision для осуществления масштабных вычислений на самой современной технике. В качестве тестовой аппаратной платформы используется кластер СКИФ-Чебышев, установленный в НИВЦ МГУ.


Кластер СКИФ-Чебышев, установленный в НИВЦ МГУ


В тесном сотрудничестве с специалистами НИВЦ МГУ (под руководством член.корр.РАН док.физ.мат.наук Вл.В.Воеводина) осуществляется оптимизация программно-аппаратного комплекса СКИФ- FlowVision по повышению эффективности параллельных вычислений. В июне 2008 года были осуществлены первые практические расчеты на 256 расчетных узлах в параллельном режиме.

В 2009 году команда FlowVision совместно с НИВЦ МГУ, компанией Сигма Технология и государственным научным центром ЦАГИ стали участниками федеральной целевой программы по созданию алгоритмов для решения задач параллельной оптимизации в задачах аэро- и гидродинамики.

текст, иллюстрации: компания ТЕСИС

Для чего нужна аэродинамика автомобилю, знают все. Чем обтекаемее его кузов, тем меньше сопротивление движению и расход топлива. Такой автомобиль не только сбережет ваши деньги, но и в окружающую среду выбросит меньше всякой дряни. Ответ простой, но далеко не полный. Специалисты по аэродинамике, доводя кузов новой модели, еще и:

  • рассчитывают распределение по осям подъемной силы, что очень важно с учетом немалых скоростей современных автомобилей,
  • обеспечивают доступ воздуха для охлаждения двигателя и тормозных механизмов,
  • продумывают места забора и выхода воздуха для системы вентиляции салона,
  • стремятся понизить уровень шумов в салоне,
  • оптимизируют форму деталей кузова для уменьшения загрязнения стекол, зеркал и светотехники.

Причем решение одной задачи зачастую противоречит выполнению другой. Например, снижение коэффициента лобового сопротивления улучшает обтекаемость, но одновременно ухудшает устойчивость автомобиля к порывам бокового ветра. Поэтому специалисты должны искать разумный компромисс.

Снижение лобового сопротивления

От чего зависит сила лобового сопротивления? Решающее влияние на нее оказывают два параметра – коэффициент аэродинамического сопротивления Сх и площадь поперечного сечения автомобиля (мидель). Уменьшить мидель можно, сделав кузов ниже и уже, но вряд ли на такой автомобиль найдется много покупателей. Поэтому основным направлением улучшения аэродинамики автомобиля является оптимизация обтекания кузова, другими словами – уменьшение Сх. Коэффициент аэродинамического сопротивления Сх – это безразмерная величина, которая определяется экспериментальным путем. Для современных автомобилей она лежит в пределах 0,26-0,38. В зарубежных источниках коэффициент аэродинамического сопротивления иногда обозначают Cd (drag coefficient – коэффициент сопротивления). Идеальной обтекаемостью обладает каплевидное тело, Сх которого равен 0,04. При движении оно плавно рассекает воздушные потоки, которые затем беспрепятственно, без разрывов, смыкаются в его «хвосте».

Иначе ведут себя воздушные массы при движении автомобиля. Здесь сопротивление воздуха складывается из трех составляющих:

  • внутреннего сопротивления при прохождении воздуха через подкапотное пространство и салон,
  • сопротивления трения воздушных потоков о внешние поверхности кузова и
  • сопротивления формы.

Третья составляющая оказывает наибольшее влияние на аэродинамику автомобиля. Двигаясь, автомобиль сжимает находящиеся перед ним воздушные массы, создавая область повышенного давления. Потоки воздуха обтекают кузов, а там, где он заканчивается, происходит отрыв воздушного потока, создаются завихрения и область пониженного давления. Таким образом, область высокого давления спереди мешает автомобилю двигаться вперед, а область пониженного давления сзади «засасывает» его назад. Сила завихрений и величина области пониженного давления определяется формой задней части кузова.

Наилучшие показатели обтекаемости демонстрируют автомобили со ступенчатой формой задней части – седаны и купе. Объяснение простое – сорвавшийся с крыши поток воздуха тут же попадает на крышку багажника, где нормализуется и затем окончательно срывается с его кромки. Боковые потоки тоже попадают на багажник, который не дает возникать вредным вихрям за автомобилем. Поэтому чем выше и длиннее крышка багажника, тем лучше аэродинамические показатели. На больших седанах и купе иногда даже удается достичь безотрывного обтекания кузова. Небольшое сужение задней части также помогает снизить Сх. Кромку багажника делают острой или в виде небольшого выступа – это обеспечивает отрыв воздушного потока без завихрений. В результате область разряжения за автомобилем получается небольшой.

Днище автомобиля также оказывает влияние на его аэродинамику. Выступающие детали подвески и выхлопной системы увеличивают сопротивление. Для его уменьшения стараются максимально сгладить днище или прикрыть щитками все, что «торчит» ниже бампера. Иногда устанавливают небольшой передний спойлер. Спойлер снижает поток воздуха под автомобилем. Но тут важно знать меру. Большой спойлер существенно увеличит сопротивление, но зато автомобиль будет лучше «прижиматься» к дороге. Но об этом – в следующем разделе.

Прижимная сила


При движении автомобиля поток воздуха под его днищем идет по прямой, а верхняя часть потока огибает кузов, то есть, проходит больший путь. Поэтому скорость верхнего потока выше, чем нижнего. А согласно законам физики, чем выше скорость воздуха, тем ниже давление. Следовательно, под днищем создается область повышенного давления, а сверху – пониженного. Таким образом создается подъемная сила. И хотя ее величина невелика, неприятность состоит в том, что она неравномерно распределяется по осям. Если переднюю ось подгружает поток, давящий на капот и лобовое стекло, то заднюю дополнительно разгружает зона разряжения, образующаяся за автомобилем. Поэтому с ростом скорости снижается устойчивость и автомобиль становится склонен к заносу.

Каких-либо специальных мер для борьбы с этим явлением конструкторам обычных серийных автомобилей выдумывать не приходится, так как то, что делается для улучшения обтекаемости, одновременно увеличивает прижимную силу. Например, оптимизация задней части уменьшает зону разряжения за автомобилем, а значит и снижает подъемную силу. Выравнивание днища не только уменьшает сопротивление движению воздуха, но и повышает скорость потока и, следовательно, снижает давление под автомобилем. А это, в свою очередь, приводит к уменьшению подъемной силы. Точно так же две задачи выполняет и задний спойлер. Он не только уменьшает вихреобразование, улучшая Сх, но и одновременно прижимает автомобиль к дороге за счет отталкивающегося от него потока воздуха. Иногда задний спойлер предназначают исключительно для увеличения прижимной силы. В этом случае он имеет большие размеры и наклон или делается выдвижным, вступая в работу только на высоких скоростях.


Для спортивных и гоночных моделей описанные меры будут, естественно, малоэффективны. Чтобы удержать их на дороге, нужно создать большую прижимную силу. Для этого применяются большой передний спойлер, обвесы порогов и антикрылья. А вот установленные на серийных автомобилях, эти элементы будут играть только лишь декоративную роль, теша самолюбие владельца. Никакой практической выгоды они не дадут, а наоборот, увеличат сопротивление движению. Многие автолюбители, кстати, путают спойлер с антикрылом, хотя различить их довольно просто. Спойлер всегда прижат к кузову, составляя с ним единое целое. Антикрыло же устанавливается на некотором расстоянии от кузова.

Практическая аэродинамика

Выполнение нескольких несложных правил позволит вам получить экономию из воздуха, снизив расход топлива. Однако эти советы будут полезны только тем, кто часто и много ездит по трассе.

При движении значительная часть мощности двигателя тратится на преодоление сопротивления воздуха. Чем выше скорость, тем выше и сопротивление (а значит и расход топлива). Поэтому если вы снизите скорость даже на 10 км/ч, сэкономите до 1 л на 100 км. При этом потеря времени будет несущественной. Впрочем, эта истина известна большинству водителей. А вот другие «аэродинамические» тонкости известны далеко не всем.

Расход топлива зависит от коэффициента лобового сопротивления и площади поперечного сечения автомобиля. Если вы думаете, что эти параметры заложены на заводе, и автовладельцу изменить их не под силу, то вы ошибаетесь! Изменить их совсем несложно, причем можно добиться как положительного, так и отрицательного эффекта.

Что увеличивает расход? Непомерно «съедает» топливо груз на крыше. И даже бокс обтекаемой формы будет отнимать не менее литра на сотню. Нерационально сжигают топливо открытые во время движения окна и люк. Если перевозите длинномерный груз с приоткрытым багажником - тоже получите перерасход. Различные декоративные элементы типа обтекателя на капоте («мухобойки»), «кенгурятника», антикрыла и других элементов доморощенного тюнинга хоть и принесут эстетическое наслаждение, но заставят вас дополнительно раскошелиться. Загляните под днище - за все, что провисает и выглядывает ниже линии порога, придется доплачивать. Даже такая мелочь, как отсутствие пластиковых колпаков на стальных дисках, повышает расход. Каждый перечисленный фактор или деталь по отдельности увеличивают расход не на много - от 50 до 500 г на 100 км. Но если все суммировать, «набежит» опять же около литра на сотню. Эти расчеты справедливы для малолитражных автомобилей при скорости 90 км/ч. Владельцы больших автомобилей и любители блльших скоростей делайте поправку в сторону увеличения расхода.

Если выполнить все вышеперечисленные условия, мы сможем избежать излишних трат. А можно ли еще снизить потери? Можно! Но это потребует проведения небольшого внешнего тюнинга (речь идет, конечно, о профессионально выполненных элементах). Передний аэродинамический обвес не дает воздушному потоку «врываться» под днище автомобиля, накладки порогов прикрывают выступающую часть колес, спойлер препятствует образованию завихрений за «кормой» автомобиля. Хотя спойлер, как правило, уже включен в конструкцию кузова современного автомобиля.

Так что получать экономию из воздуха – вполне реально.

Предлагаем вам сегодня узнать, что такое , зачем она нужна и в каком году впервые в мире появилась эта технология.

Без аэродинамики автомобили и самолеты, и даже бобслеисты, это просто объекты перемещающие ветер. Если нет аэродинамики, то ветер перемещается неэффективно. Наука об изучении эффективности отвода потоков воздуха и называется аэродинамика. Для того чтобы создать транспортное средство, которое бы эффективно отводило бы потоки воздуха, уменьшая сопротивление, необходима аэродинамическая труба, в которой инженеры проверяют эффективность аэродинамического сопротивления воздуха деталей автомобиля.

Ошибочно считается, что аэродинамика появилась с момента изобретения аэродинамической трубы. Но это не так. На самом деле появилась в 1800-х годах. Зарождение этой науки началось в 1871 году, с братьев Райт, которые являются проектировщиками и создателями первого в мире самолета. Благодаря им, начала развиваться аэронавтика. Цель была одна - попытка построить самолет.

Первое время братья проводили свои испытания в железнодорожном туннели. Но возможности туннеля для изучения потоков воздуха были ограничены. Поэтому им не удалось создать реальный летательный аппарат, так как для этого было необходимо, чтобы корпус самолета отвечал самым строгим требования аэродинамики.


Поэтому в 1901 году братья построили собственную аэродинамическую трубу. В итоге по некоторым данным в этой трубе было испытано около 200 летательных аппаратов и отдельные корпуса прототипов различной формы. На то чтобы построить первый в истории реальный самолет братьям потребовалось еще несколько лет. Так в 1903 году Братья Райт провели удачное испытание первого в мире, который продержался в воздухе в течение 12 секунд.

Что же такое аэродинамическая труба?


Это простое устройство, которое состоит из закрытого туннеля (огромной емкости) через который подаются потоки воздуха с помощью мощных вентиляторов. В аэродинамическую трубу помещают объект, на который и начинают подавать . Также в современных аэродинамических трубах специалисты имеют возможность подавать направленные потоки воздуха на определенные элементы кузова автомобиля или любого транспортного средства.


Тестирование в аэродинамических трубах приобрело массовую популярность во время Великой Отечественной войны в 40-е годы. Во всем мире военные ведомства вели исследование аэродинамики военной техники и боеприпасов. После войны военные аэродинамические исследования свернулись. Но внимание на аэродинамику обратили инженеры, проектирующие спортивные гоночные автомобили. Затем эту моду подхватили проектировщики и легковых автомобилей.


Изобретение аэродинамической трубы позволило специалистам тестировать транспортные средства, которые находятся в неподвижном состоянии. Далее подаются потоки воздуха и создается тот же эффект что наблюдается при движении машины. Даже при испытаниях самолетов объект остается не подвижным. Регулируется только , для того чтобы сымитировать определенную скорость транспортного средства.

Благодаря аэродинамики, как спортивные так и простые автомобили стали приобретать вместо квадратных форм более плавные линии и закругленные элементы кузова.

Иногда для исследования может быть не нужен и весь автомобиль. Часто , может использоваться обычный макет в натуральную величину. В итоге специалисты определяют уровень сопротивления ветра.

По тому, как движется ветер внутри трубы, определяется коэффициент лобового сопротивления ветра.


Современные аэродинамические трубы, по сути, представляют собой гигантский фен для вашего автомобиля. Например, одна из известных аэродинамических труб расположена в Северной Каролине США, где проводится исследования ассоциации . Благодаря этой трубе инженеры моделируют автомобили способные передвигаться со скоростью 290 км/ч.

В это сооружение было вложено около 40 млн. долларов. Труба начала свою работу в 2008 году. Главные инвесторы - это ассоциация гонок NASCAR и владелец гонок Джин Хаас.

Вот видео традиционного испытания в этой трубе:

С момента появления первой в истории аэротрубы инженеры поняли, насколько это изобретение важно для всей . В итоге на нее обратили внимание автомобильные проектировщики, которые стали развивать технологии исследования потоков воздуха. Но технологии не стоят на месте. В наши дни многие исследования и расчеты проходят в компьютере. Самое удивительное, что даже аэродинамические тесты проводятся в специальных компьютерных программах.


В качестве испытуемого используется 3D виртуальная модель машины. Далее на компьютере воспроизводятся различные условия для тестирования аэродинамики. Тот же подход начал развиваться и для проведения краш-тестов. , которые не только могут сэкономить деньги, ни учесть множество параметров при испытании.

Также как реальные краш-тесты строительство аэродинамической трубы и испытания в ней очень дорогое удовольствие. На компьютере себестоимость может составить всего несколько долларов.

Правда бабушки, дедушки и приверженцы старых технологий по-прежнему будут говорить, что реальный мир лучше, чем компьютеры. Но 21 век есть 21 век. Поэтому неизбежно, что в ближайшем будущем многие реальные испытания будут полностью проводиться на компьютере.

Хотя стоит отметить, что мы и не против компьютерных , но надеемся, что реальные тесты в аэротрубе и обычные краш-тесты по-прежнему останутся в автопромышленности.

С тех пор как первый человек укрепил на конце копья заточенный камень, люди всегда пытаются найти наилучшую форму предметам, двигающимся в воздушной среде. Но автомобиль оказался очень сложной аэродинамической головоломкой.

Основы тяговых расчетов движения автомобилей по дорогам предлагают нам четыре основные силы, действующие на автомобиль во время движения: сопротивление воздуха, сопротивление качению, сопротивление подъему и инерционные силы. При этом отмечается, что основными являются лишь первые две. Сила сопротивления качению автомобильного колеса в основном зависит от деформации шины и дороги в зоне контакта. Но уже при скорости движения 50-60 км/ч сила сопротивления воздуха превышает любую другую, а на скоростях свыше 70-100 км/ч превосходит их все вместе взятые. Для того чтобы доказать это утверждение, необходимо привести следующую приближенную формулу: Px=Cx*F*v2, где: Px – сила сопротивления воздуха; v – скорость автомобиля (м/сек); F – площадь проекции автомобиля на плоскость, перпендикулярную продольной оси автомобиля, или площадь наибольшего поперечного сечения автомобиля, т. е. лобовая площадь (м2); Cx – коэффициент сопротивления воздуха (коэффициент обтекаемости). Обратите внимание. Скорость в формуле стоит в квадрате, и это означает, что при ее увеличении, например, в два раза сила сопротивления воздуха увеличивается в четыре раза.

При этом затраты мощности, необходимые на ее преодоление, вырастают в восемь раз! В гонках Nascar, где скорости зашкаливают за отметку в 300 км/ч, экспериментальным путем установлено, что для увеличения максимальной скорости всего на 8 км/ч необходимо повысить мощность двигателя на 62 кВт (83 л. с.) или уменьшить Cx на 15%. Есть и иной путь – уменьшить лобовую площадь автомобиля. Многие скоростные суперкары значительно ниже обычных автомобилей. Это как раз и является признаком работ по снижению лобовой площади. Однако производить эту процедуру можно до определенных пределов, иначе таким автомобилем будет невозможно пользоваться. По этой и другим причинам обтекаемость является одним из основных вопросов, возникающих при проектировании автомобиля. Конечно, на силу сопротивления влияют не только скорость автомобиля и его геометрические показатели. К примеру, чем выше плотность воздушного потока, тем больше сопротивление. В свою очередь плотность воздуха напрямую зависит от его температуры и высоты над уровнем моря. При повышении температуры плотность воздуха (следовательно, и его вязкость) увеличивается, а высоко в горах воздух более разрежен, и плотность его ниже, и так далее. Таких нюансов великое множество.

Но вернемся к форме автомобиля. Какой предмет обладает самой хорошей обтекаемостью? Ответ на этот вопрос известен практически любому школьнику (кто не спал на уроках физики). Падающая вниз капля воды приобретает форму, наиболее приемлемую с точки зрения аэродинамики. То есть округлая фронтальная поверхность и плавно сужающаяся длинная задняя часть (лучшее соотношение – длина в 6 раз больше ширины). Коэффициент сопротивления – величина экспериментальная. Численно он равен силе сопротивления воздуха в ньютонах, создаваемой при его движении со скоростью 1 м/с на 1 м2 лобовой площади. За единицу отсчета принято считать Cx плоской пластины = 1. Так вот, у капли воды Cx = 0,04. А теперь представьте себе автомобиль такой формы. Нонсенс, не правда ли? Мало того что такая штуковина на колесах будет смотреться несколько карикатурно, использовать этот автомобиль по назначению будет не очень удобно. Поэтому конструкторы вынуждены искать компромисс между аэродинамикой автомобиля и удобством его использования. Постоянные попытки снизить коэффициент воздушного сопротивления привели к тому, что у некоторых современных автомобилей Cx = 0,28-0,25. Ну а скоростные рекордные автомобили могут похвастаться Cx = 0,2-0,15.

Силы сопротивления

Теперь необходимо немного рассказать о свойствах воздуха. Как известно, любой газ состоит из молекул. Они находятся в постоянном движении и взаимодействии друг с другом. Возникают так называемые силы Ван-дер-Ваальса – силы взаимного притяжения молекул, препятствующие их перемещению друг относительно друга. Некоторые из них начинают сильнее прилипать к остальным. А с увеличением хаотического движения молекул возрастает и эффективность воздействия одного слоя воздуха на другой, растет вязкость. А происходит это за счет повышения температуры воздуха, причем это может быть вызвано как прямым нагревом от солнца, так и косвенным от трения воздуха о какую-либо поверхность или просто его слоев между собой. Вот тут как раз влияет скорость перемещения. Для того чтобы понять, как это отражается на автомобиле, достаточно попробовать взмахнуть рукой с открытой ладонью. Если делать это медленно, ничего не происходит, но если взмахнуть рукой сильнее, ладонь уже явно воспринимает некоторое сопротивление. Но это только одна составляющая.

Когда воздух двигается над некоторой неподвижной поверхностью (например, кузовом автомобиля), те же силы Ван-дер-Ваальса способствуют тому, что ближайший слой молекул начинает прилипать уже к ней. И этот "прилипший" слой тормозит уже следующий. И так слой за слоем, и тем быстрее движутся молекулы воздуха, чем дальше они находятся от неподвижной поверхности. В конце концов их скорость уравнивается со скоростью основного воздушного потока. Слой, в котором частички движутся замедленно, называется приграничным, и появляется он на любой поверхности. Чем больше значение поверхностной энергии у материала покрытия автомобиля, тем сильнее его поверхность взаимодействует на молекулярном уровне с окружающей воздушной средой и тем больше энергии необходимо затратить на разрушение этих сил. Теперь, опираясь на вышеописанные теоретические выкладки, можно сказать, что сопротивление воздуха – это не просто ветер, бьющий в лобовое стекло. У этого процесса больше составляющих.

Сопротивление формы

Это самая значительная часть – до 60% всех аэродинамических потерь. Часто она называется сопротивлением давления или лобовым сопротивлением. При движении автомобиль сжимает набегающий на него поток воздуха и преодолевает усилие на то, чтобы раздвинуть молекулы воздуха. В результате возникает зона повышенного давления. Далее воздух обтекает поверхность автомобиля. В процессе чего происходит срыв воздушных струй с образованием завихрений. Окончательный срыв воздушного потока в задней части автомобиля создает зону пониженного давления. Сопротивление спереди и всасывающий эффект сзади автомобиля создают очень серьезное противодействие. Этот факт обязывает дизайнеров и конструкторов искать пути по приданию кузову. Разложить по полкам.

Теперь необходимо рассмотреть форму автомобиля, что называется, "от бампера до бампера". Какие из деталей и элементов оказывают большее влияние на общую аэродинамику машины. Передняя часть кузова. Экспериментами в аэродинамической трубе было установлено, что для лучшей аэродинамики передняя часть кузова должна быть низкой, широкой и не иметь острых углов. В этом случае не происходит отрыва воздушного потока, что очень благотворно сказывается на обтекаемости автомобиля. Решетка радиатора – элемент зачастую не только функциональный, но и декоративный. Ведь радиатор и двигатель должны иметь эффективный обдув, поэтому этот элемент имеет очень большое значение. Некоторые автоконцерны изучают эргономику и распределение воздушных потоков в подкапотном пространстве столь же серьезно, как и общую аэродинамику автомобиля. Наклон ветрового стекла – очень яркий пример компромисса обтекаемости, эргономики и эксплуатационных качеств. Недостаточный его наклон создает излишнее сопротивление, а чрезмерный – увеличивает запыленность и массу самого стекла, в сумерках резко падает обзорность, требуется увеличить размеры стеклоочистителя и т. д. Переход от стекла к боковине должен осуществляться плавно.

Но нельзя увлекаться излишней кривизной стекла – это может увеличить искажения и ухудшить видимость. Влияние стойки ветрового стекла на аэродинамическое сопротивление очень сильно зависит от положения и формы ветрового стекла, а также от формы передка. Но, работая над формой стойки, нельзя забывать о защите передних боковых стекол от попадания дождевой воды и грязи, сдуваемой с ветрового стекла, поддержании приемлемого уровня внешнего аэродинамического шума и др. Крыша. Увеличение выпуклости крыши может привести к уменьшению коэффициента аэродинамического сопротивления. Но значительное увеличение выпуклости может конфликтовать с общим дизайном автомобиля. Кроме того, если увеличение выпуклости сопровождается одновременным увеличением площади лобового сопротивления, то сила сопротивления воздуха возрастает. А с другой стороны, если попытаться сохранить первоначальную высоту, то ветровое и заднее стекла должны будут внедряться в крыши, поскольку обзорность ухудшаться не должна. Это приведет к удорожанию стекол, уменьшение же силы сопротивления воздуха в этом случае не столь значительно.

Боковые поверхности. С точки зрения аэродинамики автомобиля боковые поверхности оказывают небольшое влияние на создание безвихревого потока. Но округлять их слишком нельзя. Иначе трудно будет забираться в такой автомобиль. Стекла должны по возможности составлять единое целое с боковой поверхностью и располагаться на одной линии с наружным контуром автомобиля. Любые ступеньки и перемычки создают дополнительные препятствия для прохождения воздуха, появляются нежелательные завихрения. Можно заметить, что водосточные желоба, которые ранее присутствовали практически на любом автомобиле, уже не используются. Появились иные конструктивные решения, не оказывающие столь большого влияния на аэродинамику автомобиля.

Задняя часть автомобиля оказывает, пожалуй, наибольшее влияние на коэффициент обтекаемости. Объясняется это просто. В задней части воздушный поток отрывается и образует завихрения. Заднюю часть автомобиля практически невозможно сделать такой же обтекаемой, как дирижабль (длина в 6 раз больше ширины). Поэтому над ее формой работают более тщательно. Один из основных параметров – угол наклона задней части автомобиля. Уже хрестоматийным стал пример российского автомобиля "Москвич-2141", где именно неудачное решение задней части значительно ухудшило общую аэродинамику автомобиля. Но, с другой стороны, заднее стекло "москвича" всегда оставалось чистым. Снова компромисс. Именно поэтому так много дополнительных навесных элементов делается именно на заднюю часть автомобиля: антикрылья, спойлеры и т. д. Наряду с углом наклона задней части на коэффициент аэродинамического сопротивления сильно влияет оформление и форма боковой кромки задней части автомобиля. Например, если посмотреть практически на любой современный автомобиль сверху, сразу видно, что кузов спереди шире, чем сзади. Это тоже аэродинамика. Днище автомобиля.

Как может показаться поначалу, эта часть кузова не может оказать влияния на аэродинамику. Но тут возникает такой аспект, как прижимная сила. От нее зависит устойчивость автомобиля и то, насколько правильно организован поток воздуха под днищем автомобиля, зависит в итоге сила его "прилипания" к дороге. То есть если воздух под автомобилем не задерживается, а протекает быстро, то возникающее там пониженное давление будет прижимать автомобиль к дорожному полотну. Особенно это важно для обычных автомобилей. Дело в том, что у гоночных машин, которые соревнуются на качественных, ровных покрытиях, можно установить настолько малый клиренс, что начнет проявляться эффект "земной подушки", при котором прижимная сила увеличивается, а лобовое сопротивление уменьшается. Для нормальных автомобилей низкий дорожный просвет неприемлем. Поэтому конструкторы в последнее время стараются как можно больше сгладить днище автомобиля, закрыть щитками такие неровные элементы, как выхлопные трубы, рычаги подвески и т. д. Кстати, колесные ниши оказывают очень большое влияние на аэродинамику автомобиля. Неправильно спроектированные ниши могут создавать дополнительную подъемную силу.

И снова ветер

Нет необходимости говорить о том, что от обтекаемости автомобиля зависит требуемая мощность двигателя, следовательно, и расход топлива (т. е. кошелек). Однако аэродинамика влияет не только на скорость и экономичность. Не последнее место занимают задачи по обеспечению хорошей курсовой устойчивости, управляемости автомобиля и снижения шумов при его движении. С шумами все ясно: чем лучше обтекаемость автомобиля, качество поверхностей, чем меньше величина зазоров и количество выступающих элементов и т. п., тем меньше шумы. Конструкторам приходится думать и о таком аспекте, как разворачивающий момент. Этот эффект хорошо известен большинству водителей. Кто хоть раз проезжал на большой скорости мимо "фуры" или просто ездил при сильном боковом ветре, должен был почувствовать появление крена или даже небольшое разворачивание автомобиля. Нет смысла объяснять этот эффект, но это именно проблема аэродинамики.

Вот почему коэффициент Cx не единственный. Ведь воздух может воздействовать на автомобиль не только "в лоб", но и под разными углами и в разных направлениях. И все это оказывает влияние на управляемость и безопасность. Это лишь несколько основных аспектов, влияющих на общую силу сопротивления воздуха. Просчитать все параметры невозможно. Существующие формулы не дают полной картины. Поэтому конструкторы исследуют аэродинамику автомобиля и корректируют его форму при помощи такого дорогого инструмента, как аэродинамическая труба. Западные фирмы не жалеют денег на их строительство. Стоимость таких исследовательских центров может исчисляться миллионами долларов. К примеру: концерн Daimler-Chrysler вложил $37,5 млн. в создание специализированного комплекса по совершенствованию аэродинамики своих автомобилей. В настоящее время аэродинамическая труба – наиболее значимый инструмент исследования сил сопротивления воздуха, влияющих на автомобиль.