Система питания бензинового двигателя двс. Устройство системы питания бензинового двигателя



Общие сведения

Система питания предназначена для хранения топлива, подачи в цилиндры топлива и воздуха раздельно, либо приготовления топливно-воздушной (горючей) смеси с последующей подачей ее в цилиндры двигателя, отвода из цилиндров продуктов сгорания, а также для снижения уровня шума из-за выхлопа отработавших газов при работе двигателя.

Важной функцией современных систем питания является снижение токсичности выхлопных газов, содержащих вредные для живой природы вещества. Соблюдение этой функции требует ощутимых затрат мощности двигателя и приводит к удорожанию автомобилей, однако, требования к экологичности автотранспорта с каждым годом возрастают, и конструкторам автомобилей приходится учитывать эти требования при проектировании систем питания.

В зависимости от выполняемых функций элементы системы питания делятся на три составные группы:

  • приборы, обеспечивающие подготовку и подачу воздуха (воздушная группа);
  • приборы, обеспечивающие подготовку и подачу топлива (топливная группа);
  • приборы, обеспечивающие отвод отработавших газов в окружающую среду (группа отвода и глушения отработавших газов).

Исходя из назначения, система питания должна обеспечить:

  • точное дозирование топлива (подачу необходимого количества);
  • подачу в цилиндры чистого воздуха в необходимом количестве;
  • качественное приготовление горючей смеси;
  • своевременную подачу топлива или горючей смеси в цилиндры двигателя;
  • удаление продуктов сгорания и их глушение при выхлопе в окружающую среду;
  • нейтрализацию вредных веществ, содержащихся в отработавших газах.

Мощность, экономичность двигателя и токсичность отработавших газов зависят от полного и быстрого сгорания топлива. Во многом это определяется работой системы питания.

Классификация систем питания


В дизельных двигателях системы питания подразделяют по следующим признакам:

  • по способу движения топлива - тупиковые и с циркуляцией;
  • по типу механизма подачи – с объединенным насосом и форсункой (этот механизм называют насос-форсунка, см. рис. 1 ) и с разделенными насосом и форсунками;
  • аккумуляторные (типа Common Rail ).

В двигателях с искровым (принудительным) зажиганием применяют системы питания карбюраторные и с впрыскиванием бензина, а также газовые системы питания.




Состав смеси

Для полного сгорания 1 кг топлива необходимо примерно 15 кг воздуха (точнее, для бензина – 14,8 кг , для дизельного топлива – 14,4 кг ), или для 1 грамма топлива примерно 15 грамм воздуха.
В цилиндр двигателя за один цикл при полной нагрузке (в зависимости от объема цилиндра и режима работы) подается 40…80 мг топлива. Это количество называют цикловой подачей топлива .
Следовательно, для сгорания цикловой подачи требуется точное количество воздуха, примерно равное 600…1200 мг . Это количество называют цикловой подачей воздуха .

Состав смеси оценивают по коэффициенту избытка воздуха α , определяемому, как отношение количества воздуха Gдв , действительно поступившего в цилиндр, к теоретически необходимому количеству воздуха Gвт :

α = Gдв/ Gвт .

Теоретически необходимое количество воздуха – это количество воздуха, необходимое для полного сгорания топлива, поступившего в цилиндр двигателя.
Более полно процессы горения топлива описаны в разделе сайта «Термодинамика» .


По составу различают смесь нормальную (α = 1 ), бедную (α > 1 ) и богатую (α < 1). Применяют также понятия обедненная смесь (α = 1,1…1,15 ), обогащенная смесь (α = 0,8…0,9 ) и пределы воспламенения смеси.
В бензиновых двигателях при α < 0,4 и α > 1,6 смесь не воспламеняется. Дизели работают на бедных смесях α = 1,4…2,0 .

Различают пять режимов работы двигателя: основной, перегрузки, холостого хода, пуска и ускорения (например, при трогании с места, обгоне и разгоне). Для работы на каждом из этих режимов двигателю требуется различная мощность и, соответственно, горючая смесь разного состава.

Наиболее экономичная работа двигателя достигается на обедненной смеси (1,05 ≤ α ≤ 1,15 ), а наибольшую мощность он развивает на обогащенных составах (0,8 ≤ α ≤ 0,95 ). Чем беднее состав горючей смеси, тем вероятность полного сгорания топлива больше, и наоборот. Поэтому режимы работы двигателя, требующие обогащенной горючей смеси, а тем более богатой, являются неэкономичными. Они же становятся причиной наибольшего загрязнения окружающей среды продуктами неполного сгорания топлива, среди которых есть отравляющие и канцерогенные вещества.

Любой из составов горючей смеси должен отвечать требованиям, обеспечивающим качество смеси:

  • мелкое распыление топлива в слоях воздуха;
  • тщательное перемешивание частиц топлива с воздухом (качественное смесеобразование);
  • однородность, т. е. равномерное распределение топлива в воздухе по всему объему смеси.

Изменяя количество топлива при неизменной подаче воздуха (в дизелях) или и количество воздуха, и количество топлива (в бензиновых и газовых двигателях), можно получить смесь разного состава – это качественное регулирование горючей смеси .
Изменение количества смеси одного состава (в бензиновых и газовых двигателях) называют количественным регулированием горючей смеси .

Дозирование топлива

Мощность двигателя зависит от количества топлива (цикловой подачи), сгорающего в цилиндрах в рабочем цикле, и частоты вращения коленчатого вала. Так как для выполнения конкретной работы двигателю автомобиля требуется различная мощность, то возникает необходимость изменения цикловой подачи во времени. Каждому режиму нагрузки должна соответствовать точная цикловая подача топлива.
Это означает, что система питания должна обеспечить ее регулирование в процессе работы машины, а также равномерность подачи топлива по цилиндрам.


Огромное значение для повышения динамических характеристик двигателя имеет наполняемость цилиндров воздухом. Чем больше воздуха в процессе впуска успеет зайти в цилиндры, тем большую порцию топлива можно впрыснуть при прочих равных условиях. Наполняемость напрямую зависит от аэродинамического сопротивления впускного и выпускного трактов системы питания.
В качестве примера: значительная часть потенциала мощности теряется в диффузорах карбюратора и в глушителе, поскольку эти элементы системы питания оказывают существенное сопротивление воздушным и газовым потокам. В двигателях, оборудованных системами питания с впрыском топлива аэродинамическое сопротивление впускного тракта меньше, чем в карбюраторных двигателях. Для улучшения наполняемости цилиндров воздухом на многих мощных двигателях устанавливают специальные компрессоры.

Момент зажигания (впрыскивания) топлива

В карбюраторных (бензиновых) двигателях топливо подается в цилиндр в процессе впуска, в дизелях оно впрыскивается через форсунку в самом конце процесса сжатия. От момента начала впрыскивания топлива зависят динамические и экономические показатели работы дизеля, также как и от момента зажигания смеси – показатели работы бензинового двигателя.
Угол поворота коленчатого вала до ВМТ , при котором подается искра (или начинается впрыск топлива – у дизеля), называют углом опережения зажигания УОЗ (углом опережения впрыскивания – УОВ ) и обозначают буквой θ .

Испытания двигателей показывают, что каждый двигатель на конкретном режиме работы имеет оптимальный угол опережения зажигания (впрыскивания) θ опт , при котором мощность максимальная, а удельный расход топлива минимальный. Поэтому в системе питания должны быть предусмотрены специальные устройства для регулировки угла опережения зажигания (впрыскивания).



Главным предназначением топливной системы автомобиля являются подача топлива из бака, фильтрация, образование горючей смеси и подача ее в цилиндры. Существует несколько типов топливных систем для . Самая распространенная в 20-ом веке была карбюраторная система подачи смеси топлива. Следующим этапом стало развитие впрыска топлива при помощи одной форсунки, так называемый моновпрыск . Применение этой системы позволило уменьшить расход топлива. В настоящее время используется третья система подачи топлива – инжекторная . В этой системе топливо под давлением подается непосредственно в впускной коллектор. Количество форсунок равно количеству цилиндров.

инжекторный и карбюраторный вариант

Устройство топливной системы

Все cистемы питания двигателя похожи , отличаются только способами смесеобразования. В состав топливной системы входят следующие элементы:

  1. Топливный бак , предназначен для хранения топлива и представляет собой компактную емкость с устройством забора топлива (насос) и, в некоторых случаях, элементами грубой фильтрации.
  2. Топливопроводы представляют собой комплекс топливных трубок, шлангов и предназначены для транспортировки топлива к устройству смесеобразования.
  3. Устройства смесеобразования (карбюратор, моновпрыск, инжектор ) – это механизм в котором происходит соединение топлива и воздуха (эмульсии) для дальнейшей подачи в цилиндры в (такт впуска).
  4. Блок управления работой устройства смесеобразования (инжекторные системы питания) – сложное электронное устройство для управления работой топливных форсунок, клапанов отсечки, датчиков контроля.
  5. Топливный насос , обычно погружной, предназначен для закачивания топлива в топливопровод. Представляет собой электродвигатель, соединенный с жидкостным насосом, в герметичном корпусе. Смазывается непосредственно топливом и длительная эксплуатация с минимальным количеством топлива, приводит к выходу из строя двигателя . В некоторых двигателях топливный насос крепился непосредственно к двигателю и приводился в действие вращением промежуточного вала, или распредвала.
  6. Дополнительные фильтры грубой и тонкой очистки . Установленные фильтрующие элементы в цепь подачи топлива.

Принцип работы топливной системы

Рассмотрим работу всей системы в целом. Топливо из бака всасывается насосом и по топливопроводу через фильтры очистки подается в устройство смесеобразования. В карбюраторе топливо попадает в поплавковую камеру, где потом через калиброванные жиклеры подается в камеру смесеобразования. Смешавшись с воздухом смесь через дроссельную заслонку поступает в впускной коллектор. После открытия впускного клапана подается в цилиндр. В системе моно впрыска топливо подается на форсунку, которая управляется электронным блоком. В нужное время форсунка открывается, и топливо попадает в камеру смесеобразования, где, как и в карбюраторной системе смешивается с воздухом. Дальше процесс такой же, как и в карбюраторе.

В инжекторной системе топливо подается к форсункам, которые открываются управляющими сигналами от блока управления. Форсунки соединены между собой топливопроводом, в котором всегда находится топливо. Во всех топливных системах существует обратный топливопровод, по нему сливается излишек топлива в бак.

Система питания дизельного двигателя похожа на бензиновую. Правда, впрыск топлива происходит непосредственно в камеру сгорания цилиндра, под большим давлением. Смесеобразование происходит в цилиндре. Для подачи топлива под большим давлением применяется насос высокого давления (ТНВД).

Внешний вид карбюратора :
1 - блок подогрева зоны дроссельной заслонки;
2 - штуцер вентиляции картера двигателя;
3 - крышка ускорительного насоса;
4 - электромагнитный запорный клапан;
5 - крышка карбюратора;
6 - шпилька крепления воздушного фильтра;
7 - рычаг управления воздушной заслонкой;
8 - крышка пускового устройства;
9 - сектор рычага привода дроссельных заслонок;
10 - колодка провода датчика-винта ЭПХХ;
11 - регулировочный винт количества смеси холостого хода;
12 - крышка экономайзера;
13 - корпус карбюратора;
14 - штуцер подачи топлива;
15 - штуцер отвода топлива;
16 - регулировочный винт качества смеси холостого хода (по стрелке);
17 - штуцер для подачи разрежения к вакуумному регулятору зажигания

Для работы двигателя необходимо приготовить горючую смесь воздуха и паров топлива, которая должна быть гомогенной , т. е. хорошо перемешанной и иметь определенный состав, чтобы обеспечить наиболее эффективное сгорание. Система питания бензинового ДВС с искровым зажиганием служит для приготовления горючей смеси и подачи ее в цилиндры двигателя и удаления из цилиндров отработавших газов.
Процесс приготовления горючей смеси называют карбюрацией . Долгое время в качестве основного устройства для приготовления смеси бензина и воздуха и подачи ее в цилиндры двигателя использовался агрегат, называемый карбюратором.


Принцип работы простейшего карбюратора :
1 - топливопровод;
2 - игольчатый клапан;
3 - отверстие в крышке поплавковой камеры;
4 - распылитель;
5 - воздушная заслонка;
6 - диффузор;
7 - дроссельная заслонка;
8 - смесительная камера;
9 - топливный жиклер;
10 - поплавок;
11 - поплавковая камера
В простейшем карбюраторе топливо находится в поплавковой камере, где поддерживается постоянный уровень топлива. Поплавковая камера связана каналом со смесительной камерой карбюратора. В смесительной камере имеется диффузор - местное сужение камеры. Диффузор дает возможность увеличить скорость проходящего через смесительную камеру воздуха. В самую узкую часть диффузора выведен распылитель , соединенный каналом с поплавковой камерой. В нижней части смесительной камеры имеется дроссельная заслонка , которая поворачивается при нажатии водителем педали «газа».
Когда двигатель работает, через смеситель карбюратора проходит воздух. В диффузоре скорость воздуха увеличивается, а перед распылителем образуется разрежение, которое приводит к стеканию топлива в смесительную камеру, где оно смешивается с воздухом. Таким образом, карбюратор, работающий по принципу пульверизатора, создает топливно-воздушную горючую смесь . Нажимая педаль «газа», водитель поворачивает дроссельную заслонку карбюратора, изменяет количество смеси, поступающей в цилиндры двигателя, а следовательно, его мощность и обороты.
Из-за того что бензин и воздух имеют различную плотность, при повороте дроссельной заслонки изменяется не только количество подаваемой в камеры сгорания горючей смеси, но и соотношение между количеством топлива и воздуха в ней. Для полного сгорания топлива смесь должна быть стехиометрической .
При пуске холодного двигателя необходимо обогащать смесь, поскольку конденсация топлива на холодных поверхностях камеры сгорания ухудшает пусковые свойства двигателя. Некоторое обогащение горючей смеси требуется при работе на холостом ходу, при необходимости получения максимальной мощности, резких ускорениях автомобиля.
По принципу своей работы простейший карбюратор по мере открытия дроссельной заслонки постоянно обогащает топливно-воздушную смесь, поэтому его невозможно использовать для реальных двигателей автомобилей. Для автомобильных двигателей используются карбюраторы, имеющие несколько специальных систем и устройств: систему пуска (воздушная заслонка), систему холостого хода, экономайзер или эконостат, ускорительный насос и др.
По мере повышения требований к экономии топлива и снижению токсичности отработавших газов карбюраторы существенно усложнялись, в последних вариантах карбюраторов появились даже электронные устройства.

В карбюраторном двигателе в качестве топлива применяется бензин. Бензин представляет собой легковоспламеняющуюся жидкость, которая получается из нефти путем прямой перегонки, или крекинга. Бензин является одним из главных компонентов горючей смеси. При нормальных условиях сгорания рабочей смеси происходит постепенное увеличение давления в цилиндрах двигателя. При применении топлива более низкого качества, чем этого требуют технические параметры автомобильного двигателя, скорость сгорания рабочей смеси может увеличиться в 100 раз и составлять 2000 м/с, такое быстрое сгорание смеси называют детонацией. Склонность бензина к детонации условно характеризуется октановым числом, чем выше октановое число бензина, тем менее он склонен к детонации. Бензин с более высоким октановым числом применяют в автомобильных двигателях с более высокой степенью сжатия. Для снижения детонации в бензин добавляют этиловую жидкость.

В цилиндрах автомобильного двигателя рабочий процесс протекает достаточно быстро. Например, если коленчатый вал вращается со скоростью 2000 об./мин., то каждый такт совершается за 0,015 с. Для этого необходимо, чтобы скорость сгорания топлива составляла 25-30 м/с. Однако горение топлива в камере сгорания происходит медленнее. Для того чтобы повысить скорость сгорания, топливо размельчается на мельчайшие частицы и смешивается с воздухом. Установлено, что для нормального сгорания 1 кг топлива необходимо 15 кг воздуха, смесь с таким соотношением (1:15) называется нормальной. Однако при таком соотношении не происходит полного сгорания топлива. Для полного сгорания топлива необходимо больше воздуха и соотношение топлива к воздуху должно быть 1:18. Такая смесь называется обедненной. При увеличении соотношения скорость сгорания резко снижается, и при соотношении 1:20 воспламенения не происходит вообще. Но наибольшая мощность двигателя достигается при соотношении 1:13, в этом случае скорость сгорания близка к оптимальной. Такая смесь называется обогащенной. При таком составе смеси не происходит полного сгорания топлива, поэтому с увеличением мощности увеличивается расход топлива.

При работе двигателя выделяют следующие режимы:
1) пуск холодного двигателя;
2) работа на малой частоте вращения коленчатого вала (режим холостого хода);
3) работа при частичных (средних) нагрузках;
4) работа при полных нагрузках;
5) работа при резком увеличении нагрузки или частоты вращения коленчатого вала (разгон).

При каждом отдельном режиме состав горючей смеси должен быть разным.
Система питания двигателя предназначена Для приготовления и подачи в камеры сгорания горючей смеси, кроме этого система питания регулирует количество и состав рабочей смеси.

Система питания карбюраторного двигателя включает в себя следующие элементы:
1) топливный бак;
2) топливопроводы;
3) топливные фильтры;
4) топливный насос;
5) карбюратор;
6) воздушный фильтр;
7) выпускной коллектор:
8) впускной коллектор;
9) глушитель шума выпуска отработанных газов.

На современных автомобилях вместо карбюраторных систем питания все чаще применяют инжекторные системы впрыска топлива . На двигателях легковых автомобилей может быть установлена система распределительного впрыска топлива или система центрального одноточечного впрыска топлива.

Инжекторные системы впрыска топлива имеют ряд преимуществ перед карбюраторными системами питания:
1) отсутствие добавочного сопротивления потоку воздуха в виде диффузора карбюратора, что способствует лучшему наполнению камер сгорания цилиндров и получению более высокой мощности;
2) улучшение продувки цилиндров за счет использования возможности более длительного периода перекрытия клапанов (при одновременно открытых впускных и выпускных клапанах);
3) улучшение качества приготовления рабочей смеси за счет продувки камер сгорания чистым воздухом без примеси паров топлива;
4) более точное распределение топлива по цилиндрам, что дает возможность использования бензина с более низким октановым числом;
5) более точный подбор состава рабочей смеси на всех стадиях работы двигателя с учетом его технического состояния.

Кроме достоинств инжекторная система имеет один существенный недостаток. Инжекторная система впрыска топлива имеет более высокую степень сложности изготовления деталей, а также эта система включает в себя множество электронных компонентов, что приводит к удорожанию автомобиля и к сложности его обслуживания.

Система распределительного впрыска топлива является наиболее современной и совершенной. Основным функциональным элементом этой системы является электронный блок управления (ЭБУ). ЭБУ по существу представляет собой бортовой компьютер автомобиля. ЭБУ осуществляет оптимальное управление механизмами и системами двигателя, обеспечивает наиболее экономичную и эффективную работу двигателя с максимальной защитой окружающей среды на всех режимах.

Система распределительного впрыска топлива состоит из:
1) подсистемы подачи воздуха с дроссельной заслонкой;
2) подсистемы подачи топлива с форсунками по одной на каждый цилиндр;
3) системы дожигания доработанных газов;
4) системы улавливания и сжижения паров бензина.

Кроме управляющих функций ЭБУ имеет функции самообучения, функции диагностики и самодиагностики, а также он закладывает в память предыдущие параметры и характеристики работы двигателя, изменение его технического состояния.

Система центрального одноточечного впрыска топлива отличается от системы распределительного впрыска тем, что в ней отсутствует отдельный для каждого цилиндра (распределительный) впрыск бензина. Подача топлива в этой системе осуществляется при помощи центрального модуля впрыска с одной электромагнитной форсункой. Регулировка подачи топливовоздушной смеси осуществляется дроссельной заслонкой. Распределение рабочей смеси по цилиндрам осуществляется, как и в карбюраторной системе питания. Остальные элементы и функции данной системы питания такие же, как и в системе распределительного впрыска.

Система питания топливом бензинового двигателя ⭐ предназначена для размещения и очистки топлива, а также приготовления горючей смеси определенного состава и подачи ее в цилиндры в необходимом количестве в соответствии с режимом работы двигателя (за исключением двигателей с непосредственным впрыском, система питания которых обеспечивает поступление бензина в камеру сгорания в необходимом количестве и под достаточным давлением).

Бензин , как и дизельное топливо, является продуктом перегонки нефти и состоит из различных углеводородов. Число атомов углерода, входящих в молекулы бензина, составляет 5 - 12. В отличие от дизелей в бензиновых двигателях топливо не должно интенсивно окисляться в процессе сжатия, так как это может привести к детонации (взрыву), что отрицательно скажется на работоспособности, экономичности и мощности двигателя. Детонационная стойкость бензина оценивается октановым числом. Чем больше оно, тем выше детонационная стойкость топлива и допустимая степень сжатия. У современных бензинов октановое число составляет 72-98. Кроме антидетонационной стойкости бензин должен также обладать низкой коррозионной активностью, малой токсичностью и стабильностью.

Поиск (исходя из экологических соображений) альтернатив бензину как основному топливу для ДВС привел к созданию этанолового топлива, состоящего в основном из этилового спирта, который может быть получен из биомассы растительного происхождения. Различают чистый этанол (международное обозначение - Е100), содержащий исключительно этиловый спирт; и смесь этанола с бензином (чаще всего 85 % этанола с 15 % бензина; обозначение - Е85). По своим свойствам этаноловое топливо приближается к высокооктановому бензину и даже превосходит его по октановому числу (более 100) и теплотворной способности. Поэтому данный вид топлива может с успехом применяться вместо бензина. Единственный недостаток чистого этанола - его высокая коррозионная активность, требующая дополнительной защиты от коррозии топливной аппаратуры.

К агрегатам и узлам системы питания топливом бензинового двигателя предъявляются высокие требования, основные из которых:

  • герметичность
  • точность дозирования топлива
  • надежность
  • удобство в обслуживании

В настоящее время существуют два основных способа приготовления горючей смеси. Первый из них связан с использованием специального устройства - карбюратора, в котором воздух смешивается с бензином в определенной пропорции. В основу второго способа положен принудительный впрыск бензина во впускной коллектор двигателя через специальные форсунки (инжекторы). Такие двигатели часто называют инжекторными.

Независимо от способа приготовления горючей смеси ее основным показателем является соотношение между массой топлива и воздуха. Смесь при ее воспламенении должна сгорать очень быстро и полностью. Этого можно достичь лишь при хорошем смешении в определенной пропорции воздуха и паров бензина. Качество горючей смеси характеризуется коэффициентом избытка воздуха а, который представляет собой отношение действительной массы воздуха, приходящейся на 1 кг топлива в данной смеси, к теоретически необходимой, обеспечивающей полное сгорание 1 кг топлива. Если на 1 кг топлива приходится 14,8 кг воздуха, то такая смесь называется нормальной (а = 1). Если воздуха несколько больше (до 17,0 кг), смесь обедненная, и а = 1,10… 1,15. Когда воздуха больше 18 кг и а > 1,2, смесь называют бедной. Уменьшение доли воздуха в смеси (или увеличение доли топлива) называют ее обогащением. При а = 0,85… 0,90 смесь обогащенная, а при а < 0,85 - богатая.

Когда в цилиндры двигателя поступает смесь нормального состава, он работает устойчиво со средними показателями мощности и экономичности. При работе на обедненной смеси мощность двигателя несколько снижается, но заметно повышается его экономичность. На бедной смеси двигатель работает неустойчиво, его мощность падает, а удельный расход топлива возрастает, поэтому чрезмерное обеднение смеси нежелательно. При поступлении в цилиндры обогащенной смеси двигатель развивает наибольшую мощность, но и расход топлива также увеличивается. При работе на богатой смеси бензин сгорает неполностью, что приводит к снижению мощности двигателя, росту расхода топлива и появлению копоти в выпускном тракте.

Карбюраторные системы питания

Рассмотрим сначала карбюраторные системы питания, которые еще недавно были широко распространены. Они более просты и дешевы по сравнению с инжекторными, не требуют высококвалифицированного обслуживания в процессе эксплуатации и в ряде случаев более надежны.

Система питания топливом карбюраторного двигателя включает в себя топливный бак 1, фильтры грубой 2 и тонкой 4 очистки топлива, топливоподкачивающий насос 3, карбюратор 5, впускной трубопровод 7 и топливопроводы. При работе двигателя топливо из бака 1 с помощью насоса 3 подается через фильтры 2 и 4 к карбюратору. Там оно в определенной пропорции смешивается с воздухом, поступающим из атмосферы через воздухоочиститель 6. Образовавшаяся в карбюраторе горючая смесь по впускному коллектору 7 попадает в цилиндры двигателя.

Топливные баки в силовых установках с карбюраторными двигателями аналогичны бакам систем питания дизелей. Отличием баков для бензина является лишь их лучшая герметичность, не позволяющая бензину вытечь даже при опрокидывании ТС. Для сообщения с атмосферой в крышке наливной горловины бака обычно устанавливают два клапана - впускной и выпускной. Первый из них обеспечивает поступление в бак воздуха по мере расходования топлива, а второй, нагруженный более сильной пружиной, предназначен для сообщения бака с атмосферой, когда давление в нем выше атмосферного (например, при высокой температуре окружающего воздуха).

Фильтры карбюраторных двигателей аналогичны фильтрам, применяемым в системах питания дизелей. На грузовых автомобилях устанавливаются пластинчато-щелевые и сетчатые фильтры. Для тонкой очистки используют картон и пористые керамические элементы. Кроме специальных фильтров в отдельных агрегатах системы имеются дополнительные фильтрующие сетки.

Топливоподкачивающий насос служит для принудительной подачи бензина из бака в поплавковую камеру карбюратора. На карбюраторных двигателях обычно применяют насос диафрагменного типа с приводом от эксцентрика распределительного вала.

В зависимости от режима работы двигателя карбюратор позволяет готовить смесь нормального состава (а = 1), а также обедненную и обогащенную смеси. При малых и средних нагрузках, когда не требуется развивать максимальную мощность, следует готовить в карбюраторе и подавать в цилиндры обедненную смесь. При больших нагрузках (продолжительность их действия, как правило, невелика) необходимо готовить обогащенную смесь.

Рис. Схема системы питания топливом карбюраторного двигателя:
1 - топливный бак; 2 - фильтр трубой очистки топлива; 3 - топливоподкачивающий насос; 4 - фильтр тонкой очистки; 5 - карбюратор; 6 - воздухоочиститель; 7 - впускной коллектор

В общем случае в состав карбюратора входят главное дозирующее и пусковое устройства, системы холостого хода и принудительного холостого хода, экономайзер, ускорительный насос, балансировочное устройство и ограничитель максимальной частоты вращения коленчатого вала (у грузовых автомобилей). Карбюратор может содержать также эконостат и высотный корректор.

Главное дозирующее устройство функционирует на всех основных режимах работы двигателя при наличии разрежения в диффузоре смесительной камеры. Основными составными частями устройства являются смесительная камера с диффузором, дроссельная заслонка, поплавковая камера, топливный жиклер и трубки распылителя.

Пусковое устройств о предназначено для обеспечения пуска холодного двигателя, когда частота вращения проворачиваемого стартером коленчатого вала невелика и разрежение в диффузоре мало. В этом случае для надежного пуска необходимо подать в цилиндры сильно обогащенную смесь. Наиболее распространенным пусковым устройством является воздушная заслонка, устанавливаемая в приемном патрубке карбюратора.

Система холостого хода служит для обеспечения работы двигателя без нагрузки с малой частотой вращения коленчатого вала.

Система принудительного холостого хода позволяет экономить топливо во время движения в режиме торможения двигателем, т. е. тогда, когда водитель при включенной передаче отпускает педаль акселератора, связанную с дроссельной заслонкой карбюратора.

Экономайзер предназначен для автоматического обогащения смеси при работе двигателя с полной нагрузкой. В некоторых типах карбюраторов кроме экономайзера для обогащения смеси используют эконостат. Это устройство подает дополнительное количество топлива из поплавковой камеры в смесительную только при значительном разрежении в верхней части диффузора, что возможно лишь при полном открытии дроссельной заслонки.

Ускорительный насос обеспечивает принудительный впрыск в смесительную камеру дополнительных порций топлива при резком открытии дроссельной заслонки. Это улучшает приемистость двигателя и соответственно ТС. Если бы ускорительного насоса в карбюраторе не было, то при резком открытии заслонки, когда расход воздуха быстро растет, из-за инерционности топлива смесь в первый момент сильно обеднялась бы.

Балансировочное устройство служит для обеспечения стабильности работы карбюратора. Оно представляет собой трубку, соединяющую приемный патрубок карбюратора с воздушной полостью герметизированной (не сообщающейся с атмосферой) поплавковой камеры.

Ограничитель максимальной частоты вращения коленчатого вала двигателя устанавливается на карбюраторах грузовых автомобилей. Наиболее широко распространен ограничитель пневмоцентробежного типа.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 - топливная рампа; 2 - форсунки; 3 - регулятор давления; 4 - впускной патрубок двигателя; 5 - фильтр; 6 - замок зажигания; 7 - топливный насос; 8 - топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения.